
EECS 16A Designing Information Devices and Systems I
Fall 2021 Lecture Notes Note 15

15.1 Introduction: Superposition and Equivalence
Circuit analysis can be cumbersome to do by hand, and it can be difficult to understand the high-level
behavior of complicated circuits given a schematic. We need tools we can use to both lessen the burden of
analysis, and help us think about circuits and understand how they behave. Ultimately, our goal is to design
interesting circuits, and in this note we will build up additional tools to help us.

15.2 Dependent Sources
At this point, we will introduce a new circuit element: dependent sources. Dependent sources act like
the independent sources we’ve studied so far, but instead of a producing a single voltage/current, the volt-
age/current is controlled by something else in the circuit. There are four different types of dependent sources,
shown below:

−

+

Vi −
+

αVi

Voltage-controlled voltage source

−

+

Vi gVi

Voltage-controlled current source

Ii −
+ rIi

Current-controlled voltage source

Ii β Ii

Current-controlled current source

Here, the diamond symbol represents the source, which produces voltage or current proportional to a differ-
ent voltage or current elsewhere in the circuit. Let’s make this more concrete by looking at an example:
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gmvc R−
+Vin

b

+

−

vc

In this case, the current in the dependent source is equal a constant (gm) times the voltage vc, which is
defined elsewhere in the circuit. Just like an independent current source, this dependent source will produce
the same current, regardless of what is connected to it (unless vc changes – then the current will change
appropriately). As we’ll see in future notes, dependent sources are useful tools for modeling many advanced
circuit elements.

15.3 Superposition
In this section, we are going to look at circuits with multiple voltage or current sources. In particular, we
would like to introduce a very useful idea in working with circuits of this type – superposition.

Let’s think back to our seven-step circuit analysis procedure. To solve for the currents and node potentials
in a circuit, we set up a matrix problem of the form A~x =~b where ~x contained the unknown currents and
node potentials,~b contained the independent current and voltage sources, and A described the relationship
between them. Since this matrix equation describes a real system, we know that there is a unique solution.
Therefore, A is invertible:

~x = A−1~b

This means that we can describe any current or node potential (ie. any element of~x) as a linear combination
of the independent current and voltage sources (the elements of~b). For example, consider a circuit with n
independent sources voltage sources Vs1 . . .Vsn, and m independent current sources Is1 . . . Ism. An arbitrary
node potential ui (or equivalently, an arbitrary current ii) can be written as

ui = α1Vs1 + . . .+αnVsn +β1Is1 + . . .βmIsm

where the α’s and β ’s are coefficients from inverting A. Since this equation is linear, we can calculate
each term of this equation separately and then add them together at the end. For example, if we want to
calculate the first term, α1Vs1 we can set all of the other voltage and current sources to zero, then solve
for ui. Repeating this for every source then adding the results is equivalent to calculating ui with all of
the sources present. However, splitting up the calculations can help us see simplifications and patterns that
might be less obvious with all of the sources present.

This procedure is known as superposition and can be summarized as follows:

For each independent source k (either voltage source or current source)
Set all other independent sources to 0

Voltage source: replace with a wire
Current source: replace with an open circuit

Compute the circuit voltages and currents due to this source k
Compute Vout by summing the Vout,ks for all k.
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Now we ask the question: why does it make sense to replace voltage sources with wires? If we look at the
I-V plot of a voltage source VS, where I is the current going through the voltage source, then the plot would
be a vertical line:

(VS,0)
V

I

Now if we want to zero out this voltage source, we are setting VS = 0. Then the I-V plot is exactly the y-axis.

(0,0)
V

I

What does this mean? This means that it allows any current to go through, however the voltage drop always
remains zero. This is exactly what a wire element (sometimes called a short circuit) does.
Now let’s look at why we replace current sources with open circuits. If we plot the I-V graph of a current
source IS, we get the following:
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(0,IS)

V

I

What if we turn off the current source? Then the I-V graph becomes the x-axis, i.e., the line I = 0.

(0,0)
V

I

What does this mean? This means no matter what voltage you apply, there will be no current. This is equiv-
alent to an open circuit.

Now let’s illustrate this idea on the circuit below, where we would like to figure out Vout .

−
+V2

R2

−
+V1

R1

+

-

Vout

We first compute the output voltage due to V1 and hence source V2 will be replaced with a wire:
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R2

−
+V1

R1

+

-

Vout,1

We can recognize this as a voltage divider circuit, and therefore we know that Vout,1 =
R2

R1+R2
V1. Next we

compute the output voltage due to V2 and hence source V1 will be replaced with a wire.

−
+V2

R2

R1

+

-

Vout,2

We again recognize that this is just a voltage divider circuit and therefore we can see that Vout,2 =
R1

R1+R2
V2.

Finally, to get the output voltage Vout of the original circuit, we add the contributions from each voltage
source Vout =Vout,1 +Vout,2 =

R2
R1+R2

V1 +
R1

R1+R2
V2.

As a side note, we can apply the idea of replacing elements with equivalent elements (e.g. replacing a V = 0
voltage source with a wire) to resistors as well. When do resistors have an equivalent representation? We
will try and demonstrate this graphically. Recall that by Ohm’s law, the I-V graph across a resistor looks
like

slope= 1
R

R = ∞

R = 0

V

I
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We know that the slope of the line is equal to 1
R . What happens in the limit where R trends towards infinity?

Then the line becomes the x-axis, which corresponds to an open circuit as we’ve seen earlier. Now what
happens in the limit where R trends towards zero? The line becomes the y-axis, which corresponds to a
wire.

To summarize, zero voltage source and zero resistance are equivalent to wires (i.e. short circuits); zero
current source and infinite resistance are equivalent to open circuits.

15.4 Equivalence
One aspect of circuit design that is distinctly different than most software engineering is that when we
assemble a large circuit out of a component blocks, each of the blocks can potentially influence the behavior
of the others. Does this mean that every addition or change to a circuit means that we need to completely
re-analyze the entire system? No, because luckily, the ways they interact are limited in a very specific way
that we will discuss. It turns out they actually interact through only 2 parameters, current I and voltage
V . This leads to a new tool we will develop to help us when describing more complicated/complete circuit
models; the concept of equivalence.

Equivalent circuits are used to simplify interactions between circuits. Let’s take the simplest case where
interactions are only through one pair of nodes. In that case, we just have two possible quantities: the
voltage across the nodes and the current flowing through the connections. The relationship between this
current and this voltage would then fully define the interactions between the circuits. This is where the idea
of equivalence comes in. If we have a circuit that exhibits the same I−V relationship from the standpoint
of a pair of nodes, the other circuit (the one you are interacting with) can’t tell the difference. The idea of
equivalence is to be able to replace one (or both) of the interacting circuits with a simpler circuit that will
give us the same overall behavior.

Before we move on, let’s clarify what we mean by "equivalent": Two circuits are equivalent if they have
the same I−V relationship. (An example of an I−V is that of a resistor, i.e., V = IR or I = V

R ). This
is exactly what we mean by equivalence; be careful not to overextend this definition or apply others. For
example, equivalence tells us nothing about the power in a circuit and one should be careful not to assume
it does.

Now why is this possibly intuitively? Since voltage and current are governed by a linear relationship for all
of the circuit elements we’ve learned about, and a line can be uniquely determined by exactly two points,
we can capture the original circuit with a simplified circuit that has exactly two components: a voltage (or
current) source and a resistor.

Definition 15.1 (equivalent circuit): If we pick two terminals within a circuit, we say that another
circuit is equivalent to the original circuit if it exhibits the same I−V relationship at those two termi-
nals.

Note: From the standpoint of any other nodes in the circuit (i.e. any pairs of nodes), the circuit may or may
not be equivalent. Furthermore, looking at the same circuit but examining a different pair of terminals may
not produce equivalent I−V relationship.

At a high level, what does it take (at a minimum) to construct a line? We can either use two points along
the line, or one point and the slope of the line. Remember, the equivalent circuit of a circuit will have an
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identical IV curve, which is a line. In this class, we will construct these equivalent curves using a point and
the slope. The two easiest points to collect along a line are the x-intercept (point with 0 current) and the
y-intercept (point with 0 voltage).

There are two types of equivalent circuits we will construct: the Thevenin and the Norton. For the Thevenin
equivelant we look at the intersection with the x-axis (zero current); for the Norton, we look at the intersec-
tion with the y-axis (zero voltage).

Next we figure out the slope of the line; remember, for an I×V curve, the slope is equal to the resistance
(V = IR).

slope=− 1
RT h

(VT h,0)

(0,INo)

V

I

We call the first circuit below, containing a voltage source and a resistor the Thevenin equivalent circuit;
we call the second circuit, containing a current source and a resistor, the Norton equivalent circuit. Once
we simplify the original circuit to one of the above, we can easily figure out Vout no matter what resistor it is
connected to on the right. In fact, we can convert any circuit into any one of these equivalent forms.

−
+VT h

RT h I A

B

+

-

VAB

or
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INo

I

RNo

A

B

+

-

VAB

15.5 Thevenin Equivalent Circuit

−
+VT h

RT h I A

B

+

-

VAB

Now how would you figure out VT h and RT h for the Thevenin equivalent circuit?

Concretely, the procedure to solve for the Thevenin equivalent is as follows:

Step 1, find VT h: Connect an open circuit across the two output terminals and measure the voltage across
them. This measured Voc equals VT h.

−
+Vth

RT h A

B

VAB =Voc =VT h

+

-
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Step 2, find RT h: Zero out any independent sources. Remember, this means voltage sources turn into a wire
and current sources turn into an open circuit. Then apply either a test current into the terminal and measure
the resultant voltage, or apply a test voltage and measure the resultant current. RT h =

Vtest
Itest

15.6 Norton Equivalent Circuit

INo

RNo

A

B

What about solving for the Norton equivalent circuit? First, note that RNo is equal to RT h, since the slope of
the IV curve is the same. Now, instead of looking at the V axis intercept, we find the intersection with the
I-axis: At the intersection with the I-axis, the voltage drop between A and B is zero, which is equivalent to
placing a wire between A and B (i.e. shorting A and B). We denote the current through the wire be ISC.

To put it in terms of our standard procedure:

Step 1, find INo: Connect a short circuit across the two output terminals and measure the current through it.
This measured ISC equals INo.

Step 2, find RNo: Zero out any independent sources. Remember, this means voltage sources turn into a short
circuit and current sources turn into an open circuit. Then apply either a test current into the terminal and
measure the resultant voltage, or apply a test voltage and measure the resultant current. RT h =

Vtest
Itest

Note that the second step doesn’t change because RNo is equal to RT h!

15.7 Equivalence Examples
Here will we find the Thevenin equivalents for a set of simple circuits.

15.7.1 Series Resistors

Consider the schematic:
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R1

R2

a

b

Let’s follow the procedure given above.

Step 1: Note that there is already an open circuit connected between terminals a and b. In this case there is
no voltage or current source in the circuit. Therefore, the voltage at every node is the same, and therefore,
Vab,OC = 0. Remember, Vab,OC =VT h, so VT h = 0.

Step 2: There is no source to zero out in this case. Since it will turn out to be the easier choice, we will
apply a test current and measure the resulting voltage, as shown:

R1

R2

a

b

ITest

−

+

VTest

There is only one loop, and therefore all the currents in this circuit are the same.

VR1 = ITestR1 (1)

VR2 = ITestR2 (2)

VTest =VR1 +VR2 = ITestR1 + ITestR2 (3)

VTest = (R1 +R2)ITest (4)

RT h =
VTest

ITest
= R1 +R2 (5)

We see that equivalent resistance of these two resistors is simply their sum. We call these resistors in series.
Note that in order to be in series, the resistors have to have the exact same current through them.
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15.7.2 Parallel Resistors
Another way to arrange a circuit with two resistors and no voltage source is as follows:

R1

a

R2

b

Let’s again follow the procedure given above to find our equivalent circuit.

Step 1: Note that there is already an open circuit connected between terminals a and b. For the same reason
as the prior example, Vab,OC = 0 in this case. Therefore, VT h = 0.

Step 2: There is no source to zero out in this case. Since it will turn out to be the easier choice, apply a test
voltage and measure the resulting current, as shown:

R1

i1

a

R2

i2
b

−
+VTest

ITest

To analyze this circuit, first we notice that the voltage drop over each resistor is equal to VTest. This is
because the voltage drop between node a and b is VTest, and each resistor is connected to node a on one side
and node b on the other.

First we use the I-V relationship of R1.

VTest = i1R1 (6)

i1 =
VTest

R1
(7)

Then we use the I-V relationship of R2.

VTest = i2R2 (8)

i2 =
VTest

R2
(9)

Finally, they are combined to calculate the equivalent resistance.

ITest = i1 + i2 =
VTest

R1
+

VTest

R2
(10)

ITest

VTest
=

1
RT h

=
1

R1
+

1
R2

(11)
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Rearranging this expression gives our final resistance:

RT h =
R1R2

R1 +R2
(12)

We call these resistors in parallel. Note that in order to be in parallel, the voltage across them has to be the
same.

This mathematical relationship comes up often enough that it actually has a name: the “parallel operator“,
denoted ‖. When we say x ‖ y, it means xy

x+y . Note that this is a mathematical operator and does not say
anything about the actual configuration. In the case of resistors the parallel operator is used for parallel
resistors, but for other components (like capacitors) this is not the case.

From these analyses, we now have a simple rule to tell if elements are in series or parallel. Series
elements will have the exact same current through them due to KCL. Parallel elements will have the
exact same voltage across them due to KVL.

15.7.3 Voltage Divider
Now let’s apply our analysis above to a voltage divider circuit shown below (which is very similar to the
touchscreen). To figure out Vth, we solve for Voc in the following circuit

−
+VS

I
+

−

Rab

+

−

Rbc VAB,oc

A

B

+

-

Note that the same current flows through the two resistors. In addition, the voltage drop over the two resistors
sums to Vs, so we can write VRab =Vs−VAB,oc. Therefore, using Ohm’s Law:

IRab = IRbc

VRab

Rab
=

VAB,oc

Rbc
Vs−VAB,oc

Rab
=

VAB,oc

Rbc
Vs

Rab
− VAB,oc

Rab
=

VAB,oc

Rbc

VAB,oc =
Rbc

Rab +Rbc
Vs

To figure out Rth, we zero out the independent source and apply a test voltage, measuring the resultant
current.

EECS 16A, Fall 2021, Note 15 12



+

−

Rab

+

−

Rbc −
+ VTest

ITest

A

B

We can see that this is the same as the parallel resistor case we examined above: therefore, RT h =
VTest
ITest

=
Rab ‖ Rbc.

This gives us a resulting Thevenin equivalent circuit of:

−
+Vth=VAB,oc= Rbc

Rab+Rbc
VS

Rth= RabRbc
Rab+Rbc A

B

What if we instead chose the upper two nodes (instead of the lower two nodes) as the two terminals (nodes
A and B)? We can follow the same procedure to find an equivalent Thevenin circuit from the standpoint of
these new nodes,

−
+VS

I
+

−

Rab

+

−

Rbc

VAB,oc

B

A

After following the same procedure we get the following equivalent circuit:
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−
+Vth=VAB,oc= Rab

Rab+Rbc
VS

Rth= RabRbc
Rab+Rbc A

B

This is not the same result! In this case, the Thevenin voltages in the two circuits are different. This example
shows how different pairs of nodes in the same circuit result in different equivalent circuits. In general, there
is no guarantee that circuits will behave in the same way from the standpoint of different pairs of nodes.

15.8 Summary for Finding Equivalent Resistance
In general, there are three ways of finding the Thevenin/Norton equivalent resistance of a circuit. However,
some of them only work in certain situations, so need to be used with caution.

1. Zero out all independent sources and apply a Vtest or Itest to calculate the resulting Itest or Vtest respec-
tively. Req =

Vtest
Itest

.

This is the method that we described in detail in the examples above, because this method works for
any circuit. When in doubt, this method is the most reliable.

2. Zero out all independent sources and reduce the entire remaining circuit into a single resistor using
the series and parallel resistor formulas that were derived in Sections 15.7.1 and 15.7.2.

This method does not work if there are dependent sources. Remember that only independent
sources are zeroed out, and there are no resistor formulas for dependent sources. In addition, some
resistor configurations cannot be decomposed into combinations of parallel and series resistances.

3. Calculate Vth and Ino, Req =
Vth
Ino

. This is an efficient method of finding Req if both the Thevenin and
Norton equivalent circuits are being derived. Why does this work? Since the IV relationship is linear,
we can calculate the slope (which is the reciprocal of resistance) from any two points. Vth and Ino are
the points where the IV curve crosses the V and I axes, respectively (see the left-hand figure below).

However, this method does not work if Vth and Ino do not provide two unique points on the IV curve
(see the right-hand figure below). Specifically, this method only works if there is at least one
independent source in the circuit. When there are no independent sources, Vth = Ino = 0 which does
not provide enough information to calculate Req.
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slope=− 1
Req

(Vth,0)

(0,Ino)

V

I

Req =
Vth
Ino

(Vth,0)
(0,Ino) V

I

Req cannot be calculated from Ino and Vth
alone

15.9 Practice Problems
These practice problems are also available in an interactive form on the course website.

1. True or False: For the following circuit, Vout <Vin for any 2 positive resistors R1 and R2.

−
+Vin

R1

R2

+

−

Vout

2. Find the equivalent resistance of the following network between a and b.
a

R1

b

R4

R2

R3

R5
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(a) (R1 +R4) ‖ R2 ‖ (R3 +R5)

(b) (R1 ‖ R2 +R4) ‖ (R3 +R5)

(c) R1 ‖ R2 ‖ (R3 +R5)

(d) R1 ‖ R2 ‖ R3 +R4 ‖ R5

3. True or False: The power generated by the Thévenin equivalent circuit equals the total power gener-
ated in the original circuit.

4. Consider the following circuit:

−
+12V

3Ω

6Ω

7Ω

a

b

Find Rth and Vth between a and b.

5. Consider the following circuit:

−
+10V

5Ω

2A 20Ω

6Ω

a

b

Find Rth and Vth between a and b.

6. True or False: Resistors in parallel have an equivalent resistance that is smaller than any of the indi-
vidual resistances (positive resistance only).

7. What is the voltage between the nodes a and b?

−
+10V

2Ω

a

b

1A5Ω

8. For the same circuit above, what is the equivalent Thevenin resistance between the nodes a and b?
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