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211 Mociuie GO&]S

In this module, we introduce a family of ideas that are connected to optimization and machine learning,
which are some of the modern pillars of EECS. You’ll learn more about these concepts in EECS 127 and
CS 189.

This module uses the practical example of localization — figuring out where you are — as a source of
examples and as a connection to the lab. However, just like in previous modules, the ideas we will learn and
the skills that we develop are far more generally applicable.

21.2  Introduction: Positioning Systems

GPS (the Global Positioning System) is a navigational system that we use all the time to tell us where we
are. In this module, we’ll explore the signal processing underlying GPS, and you’ll build your own auditory
positioning system in the lab.

How does GPS work? A receiver, such as your cell phone, receives messages from satellites orbiting the
earth. From these messages, the receiver is able to determine how far away it is from each satellite. The
receiver also knows the positions of each satellite.

Satellite 1
Satellite 2

Receiver

Satellite 3

The distance to the first satellite defines a set of possible locations where the receiver could be — a circle
(or a sphere in 3D) around the satellite. Each other satellite also defines a circle of possible locations. By
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combining the measurements from all of the satellites, the receiver can determine its position!

Satellite 1
Satellite 2

d, d,

T

Satellite 3

However, in real life, our measurements will be noisy. Can we use extra measurements from more satellites
to reduce the effects of noise? In this module, we’ll also look at how to combine many measurements
together to get a better estimate of position.

We can break this process into two parts, which we’ll cover in detail in the upcoming notes:

1. Find the distances from the receiver to the satellites, based on the messages received.
2. Combine the measurements from each satellite to determine location.

In this note, we’ll introduce some fundamentals that will be built on in the rest of the module.
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21.3 Inner Products

Definition of Inner Product: The (Euclidean) inner product between two vectors X,y € R" is defined as:
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=) xyi 4)
i=1

In physics, inner products are often called dot products (denoted by X y) and can be used to calculate values
such as work. In this class we will use the notation (¥,¥) for the inner product.

Example 21.1 (Inner product of two vectors): Compute the inner product of the two vectors [— 1 35 O] !
and [1 0 2]".

-17 1 1
< 3.5(, (0 >:[—1 35 0] |0 (5)
2

0 2
=—1Ix1435x0+0x2 (6)
=—14+0+0=—1. @)

214 Tnner Products and Properties

We have already seen in Module 1 that the inner product between column vectors X,y € R" is defined as the
vector-vector product X' y. So, why do we now insist on using the notation (¥,y)? The answer is that one
can generically define an inner product on certain vector spaces, and the bracket notation is the commonly
accepted terminology. Different types of inner products can be useful for different applications (e.g., the
Fourier Transform in EE 120 coincides with a very special example of an inner product).

In general, if V is a real vector space, we say that the mapping i,V € V — (i, V) € R is an inner product if
it satisfies the following properties:

1. Symmetry: (i, V) = (v,i) forall i,y € V. !

2. Linearity: (o, V) = a(id,V) and (ii +w,V) = (i, V) + (w,V) for all éi,V,w € V and o € R.

'In later classes, you’ll see that this ceases to be true if we are working with complex numbers. But since we only work with
real-valued vectors in this class, commutativity is always true for our purposes.
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3. Positive-definiteness: (v,V) > 0 for all v € V, with equality only if ¥ = 0.

In this class, we generally stick with the vector space V = R” and the usual inner product (¥,%) = ¥’ ¥, which
satisfies the requisite properties above due to the properties of vector-vector multiplication. However, one
can define other inner products on R”, as the following example shows.

Example 21.2 (Example of inner product on R?): Let Q = <3 l) . You can check that the following

1 2
defines an inner product:
(%.5) =3"0y, TjeR%.

It turns out that such “weighted” inner products are very closely connected to eigenvalues and eigenvectors
(of the matrix Q), and play a big role in optimization and machine learning.

An important example of an inner product on the vector space of square-integrable functions is as follows:

Example 21.3 (Example of inner product on square-integrable functions): Let V consist of the set of
functions f : R — R such that [|f(x)|?dx < . It turns out that this is a vector space. An example of an
inner product on this space is given by:

(.0 = [ fR)g@dx, figev.

This particular inner product plays a big role in the continuous-time Fourier Transform (which you encounter
in EE 120).

As noted, we generally consider (¥,y) = ¥7¥ in this class, but it is good to be aware of the broader context
(and hence our insistence on adopting the bracket notation).

21.5 Orthogonal Vectors

Two vectors X, ¥ in R” are orthogonal if their inner product is zero, i.e. (¥,¥) = 0. The words perpendicular
and orthogonal mean the same thing, but when working in dimensions greater than 2D or 3D, the term
orthogonal tends to be more commonly used.

1 4
Here’s an example, in R3. Let’ssay¥= [1| and¥= | —1|. Then, (%,y) = (1)(4)+(1)(=1)+(3)(~1) =0.
3 —1

Thus, X and y are orthogonal.

Note that the standard unit vectors are always orthogonal to each other.

21.0 Special Vector Operations

The inner product is a basic building block for many operations. Here are some useful operations you can
perform with the inner product calculation using different vectors as inputs.

These things are often important in computer programming contexts because computers (and programming
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languages) are often optimized to be able to do vector operations like inner products very fast. So, seeing an
inner-product way of representing something can often speed up calculations considerably.

Sum of Components

(01 5o x e x)") =x0x 4t @®)
Average

<[% % %]T’[XO X e x"]r>:x0+x1:...+m 9)
Sum of Squares

(o x - w0 m oo w]) =B+l (10)

Selective Sum Here, the first vector has values of 0’s and 1’s, where 1’s correspond to the values of the
second vector that are to be used in the sum. This, for example, can take the place of a for loop
checking every element of a vector.

(oo 101 01 [0 x  x)=ntut.tx (11)

21.7 Norms

The Euclidean Norm of a vector is defined as:

X = \/x + 3+ ...+ 22 =/ (X,X), (12)
where the inner product on the right is the Euclidean inner product.

Why is the norm important? The norm of a vector is also the magnitude of the vector (or length of the
arrow). This corresponds to the usual notion of distance in R? or R3. It is interesting to note that the set of
points with equal Euclidean norm is a circle in R? or a sphere in R>.

More generally, any choice of inner product will give rise to a corresponding norm via defining ||V|| :=
v/ (¥,V). Although they can be very useful, these norms will not generally correspond to the Euclidean
length that we are all familiar with. We won’t go down this route in this class.

21.8 Properties of Norms

The following properties are true for all norms (not just the 2-norm).

Non-negativity: For X in R”",

1% =0
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Zero Vector: The zero vector is the only vector with a norm of zero. For X in R”,

|%]| = 0 if and only if ¥ =0

Scalar Multiplication: For vector X in R” and scalar ¢,

[[oex]] = fexl[|]

Triangle Inequality: For vectors X and y in R”,

1%+ Y1l < (1] + 151

21.9 Interpretation of the Inner Product

Now that we have defined the inner product, it’s time to get an intuition about what an inner product is.

. . . 1 . . L |cosa
First we take the unit vector e] = [O] and a general unit vector in R?, ¥ = [ .

sin o
|X]| = V/cos? o +sin* o = 1.
When we draw the vectors, the angle between them is o. We can calculate
(@,3) = 1| |cosa
PN (0] [sina

= (1)(cosax) + (0)(sin)
=cosa

] . X1is a unit vector because

This shows that the inner product of two unit vectors is the cosine of the angle between them when one of
cos a]

—

the vectors is pointed along the x-axis. Let’s try to prove this for two general unit vectors in R?, X = [sin o

and y = [‘:rf g } . (All unit vectors can be represented in this form).
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k CES((B) )

N
cos(a)

12|l =1, [lgll=1

Let’s plug these vectors into the definition of the inner product. We’ll use the trigonometric identity
cosacosf +sinasinf3 = cos(a —fB).

w9 ={[imal [m))

= cosoacos B+ sinasin (13)
=cos(ax—fB)
=cosf

We’ve shown now that the inner product is the cosine of the angle between any two unit vectors.

What about any two general (nonzero) vectors X and y? (Now we will let X and y be any length). We can
first convert them into the unit vectors by dividing by the norm. This is called normalization.
L X .
X= —— y =
[l

“<l

Since the direction of a vector does not change when it’s multiplied by a scalar (and the norm is a scalar),
then we know that the normalized vectors will point in the same direction as the original vectors. The angle
between X and ¥ is only dependent on their directions, so 8 is unchanged by dividing by the norm. Therefore,
we can apply Eq. (13) on the normalized vectors:

ly

<x,y>:c039 (14)
[l
We can then use scalar multiplication property of inner products (Eq. (??)) since norms are scalars:
E)_ osh
[yl (15)

(x5) = [Ix[lllyllcos &
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Now we have a geometric interpretation of the inner product: the inner product of vectors X and ¥ is their
lengths multiplied by the angle between them. One remarkable observation is that the inner product does
not depend on the coordinate system the vectors are in, it only depends on the relative angle between these
vectors and their length. This is the reason it is very useful in physics, where the physical laws do not
depend on the coordinate system used to measure them. This is also the reason why this property holds in
higher dimensions as well. For any two vectors we can look at the plane passing through them and the angle
between them is the angle 6 measured in the plane.

21.10 The Cauchy—Schwarz Inequality

The Cauchy-Schwarz inequality relates the inner product of two vectors to their length. The Cauchy-
Schwarz inequality states:

| (%3] < [I1%]]]17]] (16)

We can prove this by recognizing that |cos 6| < 1 for all real 6. Thus:

5] = ufuuyucose]
1 7)
— 1%/ cos|
< 715

21.11 p—Norms [optional}

Sometimes, we write the Euclidean norm of a vector as ||¥||,, with a subscript 2. The subscript differentiates
the Euclidean norm (or 2-norm) from other useful norms. In general, the p-norm is defined as:

7], = (Jx1[? + Peal? + .. 4 x| P) 7 (18)

These other norms might feel esoteric but turn out to be useful in many engineering settings. Follow-on
courses like EECS 127 and EE 123 will show you how these can be useful in applications like machine
learning.

If no subscript is used, you can assume the 2-norm.

21.12 Projections

For vectors X,y, we define the projection of X onto ¥ according to:

projyx :=
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By definition, we see that proj;X € Span{y}. Moreover, if we define the vector
€ = X — projyx,
then, by definitions, it turns out that
(€,5) = (X — projgx, y) = (£,5) — (V,X) = 0.

That is, the vectors € and ¥ are orthogonal. This “orthogonality principle” gives rise to a very important fact:
The vector projy is the unique vector in Span{y} that is closest to X as measured by the norm | - ||. Stated
mathematically,
roj;X = arg min _||X—V||.
proj; gﬁgspan{y}ll |

We’ll discuss this more when we talk about the problem of least-squares. However, you might want to draw
a picture to gain an intuitive understanding (an example is given in the practice problems).

Note: Surprisingly, the above only uses generic properties of the inner product, and does not need to the
specific choice of the Euclidean inner product to work out.

21.13 Practice Problems

These practice problems are also available in an interactive form on the course website.

1. We can verify that 2 vectors are orthogonal to each other by:

(a) Multiplying their magnitudes together and checking if it is 1.

(b) Taking the outer product of the two and checking if it is O.

(c) Multiplying the magnitudes and the cosine of the angle between them and checking if it is O.
(d) Multiplying the magnitudes and dividing by the cosine of the angle between them and checking

ifitis 1.
2. True or False: If two vectors i and V are orthogonal, then ||+ V| = ||| + ||V]|-
3. True or False: If two vectors # and V are linearly dependent, then | (i, V)| = ||i]|||V]|.

4. Do the following functions satisfy the all of the inner product properties for vectors in R?? If not, give
a counterexample.

@y o5
CEAHME
CEAIE
CEARHE
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10.

Consider the vectors X = [ﬂ and y = [i

] . Plot the vectors X,y and

)
¥
¥, ¥)

T~
<l
=l

—

p:

i

~

The vector p is called the projection of X onto y; does the picture you drew suggest why this is
appropriate terminology?

Let X,y € R" such that ||X|| = 1. Find projy.

2} onto the vector [Z] ?

What is the projection of the vector [3

. Assume that you receive a shifted signal 7 and you correlate it with the original periodic signal §, such
1]
—32
that Cy7 = circcorr(7,5) = 12 . What would you estimate as the sample delay between you and
96
- 24 -
the transmitter?
. True or False: ||Cs¥|| = || G-

True or False: The projection of ¥ onto V is the same as the projection of ¥ onto ¢V whenever ¢ # 0.
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