
EECS 16A Designing Information Devices and Systems I
Fall 2021 Lecture Notes Note 2B

2.1 Matrix-Matrix Multiplication (i.e., Transformation of Spaces)

Matrix-matrix multiplication is another powerful tool for modeling linear systems, which we will discuss
further in later notes. As an example, two matrices A and B in R2×2 can be multiplied as follows:[

a11 a12
a21 a22

][
b11 b12
b21 b22

]
=

[
a11b11 +a12b21 a11b12 +a12b22
a21b11 +a22b21 a21b12 +a22b22

]
A B AB

Computationally, matrix-matrix multiplication involves multiplying each row vector in A with each column
vector in B, starting from the top row of matrix A and leftmost column of matrix B. Effectively, the left matrix
is multiplied by each column vector in the second matrix to produce a new column of AB. Why columns
and not rows? That’s just convention. But this does lead to an important point about the dimensions of
matrix-matrix multiplication.

To left-multiply a matrix B by another matrix A, the number of columns in A must equal the number of rows
in B. Otherwise, the product A×B cannot be calculated. Moreover, if A is an m×n matrix and B is n× p,
the product A×B will have dimensions m× p. A visual illustration of this can be seen here, where the left
matrix is broken up into m row vectors and the right matrix is represented as p column vectors:
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In order for the inner product~rT
i ~c j to be defined, each row vector (~rT

i ) must have the same number of entries
as each column vector (~c j). As a result, matrix-matrix multiplication is typically not commutative — A×B
does not necessarily equal B×A. In fact, both quantities can only be calculated if the number of rows in A
equals the number of columns in B and the number of rows in B equals the number of columns in A.

To illustrate this, consider the following example of taking the product of two 2×2 matrices.

Example 2.1 (Matrix Multiplication):[
2 4
3 1

][
1 2
3 4

]
=

[
(2)(1)+(4)(3) (2)(2)+(4)(4)
(3)(1)+(1)(3) (3)(2)+(1)(4)

]
=

[
14 20
6 10

]
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Example 2.2 (Matrix Multiplication is Not Commutative!): Above, we mentioned that matrix multipli-
cation does not commute - that is to say, there exist matrices A and B such that AB 6= BA. Let’s see if we can
come up with such an example to verify that assertion.

A natural approach would be to take the matrices from the above example, multiply them in the other order,
and see if we get the same answer. Let’s try it out! Swapping the order of the matrices, we obtain[

1 2
3 4

][
2 4
3 1

]
=

[
(1)(2)+(2)(3) (1)(4)+(2)(1)
(3)(2)+(4)(3) (3)(4)+(4)(1)

]
=

[
8 6
18 16

]

As expected, we did not end up with the same result as we did before. Having produced a counterexample,
we have therefore proven that matrix multiplication is not generally commutative.

Be aware, however, that there still might (and indeed do!) exist pairs of matrices whose product is commu-
tative. All we have shown here is that not all pairs of matrices produce the same product when multiplied in
the opposite order.

Example 2.3 (Matrix Multiplication is Associative!): Having seen above that matrix multiplication is not
commutative, we might start asking questions about associativity, as well. In particular, is it true that given
three matrices A, B, and C, that (AB)C = A(BC)? Put differently, does the grouping of matrices in a product
not matter, if the order is kept the same throughout?

As it turns out, this is true. Unfortunately, a general proof of associativity is tedious and relies on just
repeatedly applying the component-wise definition of matrix multiplication. To gain some intuition about
associativity, it’s better to simply consider an example, such as the following:[

3 4
5 6

][
7 8
9 10

][
11 12
13 14

]
.

The above product can be evaluated in two different ways - we will do both, and verify that we get the same
answer either way.

Let’s first multiply the first two matrices together, before multiplying their product with the third:([
3 4
5 6

][
7 8
9 10

])[
11 12
13 14

]
=

[
(3)(7)+(4)(9) (3)(8)+(4)(10)
(5)(7)+(6)(9) (5)(8)+(6)(10)

][
11 12
13 14

]
=

[
57 64
89 100

][
11 12
13 14

]
=

[
(57)(11)+(64)(13) (57)(12)+(64)(14)
(89)(11)+(100)(13) (89)(12)+(100)(14)

]
=

[
1459 1580
2279 2468

]
.

Then, let’s try multiplying the last two matrices together first, before multiplying the first matrix with that
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product: [
3 4
5 6

]([
7 8
9 10

][
11 12
13 14

])
=

[
3 4
5 6

][
(7)(11)+(8)(13) (7)(12)+(8)(14)
(9)(11)+(10)(13) (9)(12)+(10)(14)

]
=

[
3 4
5 6

][
181 196
229 248

]
=

[
(3)(181)+(4)(229) (3)(196)+(4)(248)
(5)(181)+(6)(229) (5)(196)+(6)(248)

]
=

[
1459 1580
2279 2468

]
,

which is the same as what we got before!

The fact that three fairly arbitrary matrices exhibit associativity when being multiplied should be a strong
hint that matrix multiplication is probably associative - however, it is important to understand that this is not
a proof of the associativity of matrix multiplication. To prove that matrix multiplication is associative, we’d
have to show that any triplet of matrices can be multiplied in either order without changing the final answer
- showing that it seems to work for particular examples is not sufficient.

Example 2.4 (Matrices as Functions): In a single-variable situation, we might have a function f that takes
in a number x and outputs a number f (x). If we want functions of multiple variables, we can use vectors.
The input~x is now a list of variables. The output is another list of numbers. If f is linear, then it acts on a
list of variables by multiplying them by scalars and adding them together. In this case, we can represent f
as a matrix. Therefore, matrices are also called linear maps or linear transformations.

As an example, recall the water reservoir, where applying the matrix to the current distribution of water
gives us the next day’s distribution: 1

2
1
4

1
3

1
2 0 1

3
0 3

4
1
3

xA

xB

xC

=

x′A
x′B
x′C


Here, we have three variables, one for each reservoir. We want a function that takes in a water distribution
and gives us the water distribution one day later, which is represented by the matrix A.

What if we want the water distribution two days later? We could apply A twice, giving us A(A~x). Al-
ternatively, a key property of matrix multiplication is associativity, or (AB)C = A(BC), so we know that
A(A~x) = (AA)~x. Therefore, we can use matrix-matrix multiplication to produce AA:1

2
1
4

1
3

1
2 0 1

3
0 3

4
1
3

1
2

1
4

1
3

1
2 0 1

3
0 3

4
1
3

=

3
8

3
8

13
36

1
4

3
8

5
18

3
8

1
4

13
36


This operation gives us a single matrix representing two days of water flow. In other words, matrix multi-
plication implements function composition, and AA represents applying the function A twice.

In algebra, we learned how to manipulate functions of one variable. Linear algebra teaches us how to
manipulate linear functions of multiple variables.

In a later note, we will further explore how matrix-matrix multiplication applies to linear transformations.
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Additional Resources For more on matrix-matrix multiplication, read Strang pages 61-62, and
try Problem Set 2.3.

In Schuam’s, read pages 30-33 and try Problems 2.4 to 2.11, 2.39 to 2.40, 2.42, 2.44 -
2.49, 2.12 to 2.16, 2.41, 2.43, and 2.72. Extra: Understand Polynomials in Matrices.

2.2 Linear Transformations
2.2.1 A Natural Generalization

In an earlier note, we looked at linear functions over the reals - specifically, we defined a scalar function
f (x) to be linear if, for any scalar k,

f (kx) = k · f (x).

We will now work to generalize this definition to functions acting on vectors. The most natural generaliza-
tion would simply be to replace x with~x in the above definition - in other words, we might define a function
f to be linear if and only

f (k~x) = k f (~x).

Unfortunately, the above definition isn’t quite sufficient. Why? Well, in the scalar (“one-dimensional”) case,
knowing f (x0) for a single nonzero scalar x0 was sufficient to define f (x) over all the reals, since we could
write

x = (x/x0)x0 =⇒ f (x) = (x/x0) f (x0).

Can we do something similar now, working over vectors? Imagine working in two dimensional space, where
the span of two vectors ~x0 and ~x1 is R2. By definition, we know any vector ~x ∈ R2 can be expressed as a
linear combination

~x = α~x0 +β~x1

of the two vectors whose span we are considering. Thus, a natural analog of our result over scalars would
be to say that

f (~x) = f (α~x0 +β~x1) = α f (~x0)+β f (~x1).

More generally, given the output of a linear function for a given set of vectors, we’d like to be able to evaluate
the function at any point in the span of the given set of vectors. Unfortunately, our proposed definition of
linearity doesn’t let us do this. Why? Consider the following function f : R2→ R:

f (~x) = f
([

x0
x1

])
=


2x0, for x0 = x1
x1, for x0 =−x1
0, otherwise

 .

Some inspection of f (~x) will show that f (k~x) = k f (~x) for all~x. But observe that while[
2
0

]
=

[
1
1

]
+

[
1
−1

]
,

f
([

2
0

])
= 0 6= 2−1 = f

([
1
1

])
+ f

([
1
−1

])
,

EECS 16A, Fall 2021, Note 2B 4



so our desired generalization doesn’t hold. Clearly, if we want our generalized result to hold, we need to
strengthen our definition of linearity.

2.2.2 Additivity

One way to do so is to introduce one further requirement, known as additivity - specifically, that

f (~x+~y) = f (~x)+ f (~y)

for all ~x and ~y. Observe now that, by applying additivity as well as our previous requirement (known as
homogeneity), we can directly show that

f (α~x0 +β~x1) = f (α~x0)+ f (β~x1)

= α f (~x0)+β f (~x1),

as desired! As it turns out, these two requirements are all that are needed to generalize linear functions to
act over vectors, where they are known as linear transformations. One interesting thing to note is that
additivity also holds for scalar linear functions, and can be derived from homogeneity - it’s only when
working with vectors that additivity starts to give us something new.1

2.2.3 Matrices as Linear Transformations

So far, we’ve established the requirements that a linear transformation must satisfy. But what is a linear
transformation, really? As it turns out, multiplying a matrix with a column vector is a linear transformation
- specifically, the function

fA(~x) = A~x

is a linear transformation for any matrix A. Typically, we simplify this statement by stating that the matrix
A itself is a linear transformation, with the matrix used to represent the transformation fA.

But why is this true? To check if a function is a linear transformation, we simply need to verify that it satisfies
the requirements of homogeneity and additivity. Observe that, by the rules of matrix-vector multiplication,

fA(~x+~y) = A(~x+~y) = A~x+A~y = fA(~x)+ fA(~y)

fA(k~x) = A(k~x) = k(A~x) = k fA(k~x),

where~x and~y are arbitrary vectors, A is a matrix with the appropriate dimensions, and k is an arbitrary real
scalar, so both additivity and homogeneity are satisfied by matrix multiplication. Thus, matrix multiplication
is a linear transformation, as we claimed earlier.

One final piece of jargon remains to be introduced - when a linear transformation yields vectors of the
same dimension as its input (i.e. if f (~x) has the same dimension as ~x) then it is sometimes called a linear
operator.

1A good question to ask at this point would be: does additivity imply homogeneity? As it turns out, the answer is no - try to
produce a function that satisfies additivity but not homogeneity! It’s fairly easy to do so when working over the field of complex
numbers, but much harder to do so when working over the reals, like we do here.
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2.3 Practice Problems
These practice problems are also available in an interactive form on the course website.

1. Multiply

 1 5 0
10 3 7
6 4 11

 with

2 12 3
1 8 0
9 1 2

. What is the first row of the resulting matrix?

(a)
[
16 52 5

]
(b)

[
3 40 7

]
(c)

[
7 52 3

]
(d)

[
14 13 2

]
2. Matrix Multiplication

Consider the following matrices:

A =
[
1 4

]
B =

[
3
2

]
C =

[
1 4
2 3

]
D =

[
3 2
2 1

]

E =

[
1 9 5 7
4 3 2 2

]
F =


5 5 8
6 1 2
4 1 7
3 2 2

 G =

8 1 6
3 5 7
4 9 2

 H =

5 3 4
1 8 2
2 3 5


For each matrix multiplication problem, if the product exists, find the product by hand.
Otherwise, explain why the product does not exist.

(a) A B
(b) C D

(c) D C

(d) C E

(e) F E (only note whether or not the product exists)

(f) E F (only note whether or not the product exists)

(g) G H

(h) H G
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