
EECS 16A Designing Information Devices and Systems I
Fall 2021 Lecture Notes Note 3

3.1 Linear Dependence
Recall the simple tomography example from Note 1, in which we tried to determine the composition of a
box of bottles by shining light at different angles and measuring light absorption. The Gaussian elimination
algorithm implied that we needed to take at least 9 measurements to properly identify the 9 bottles in a box
so that we had at least one equation per variable. However, will taking any 9 measurements guarantee that
we can find a solution? Answering this question requires an understanding of linear dependence. In this
note, we will define linear dependence (and independence), and take a look at what it implies for systems of
linear equations.

3.1.1 What is Linear Dependence?

Linear dependence is a very useful concept that is often used to characterize the “redundancy” of information
in real world applications. We will give two equivalent definitions of linear dependence.

Definition 3.1 (Linear Dependence (I)): A set of vectors {~v1, . . . ,~vn} is linearly dependent if there exist
scalars α1, . . . ,αn such that α1~v1 + · · ·+αn~vn =~0 and not all αi’s are equal to zero.

Definition 3.2 (Linear Dependence (II)): A set of vectors {~v1, . . . ,~vn} is linearly dependent if there exist
scalars α1, . . . ,αn and an index i such that ~vi = ∑ j 6=i α j~v j.1 In words, a set of vectors is linearly dependent if
one of the vectors could be written as a linear combination of the rest of the vectors.

Why did we introduce two equivalent definitions? They could be useful in different settings. For exam-
ple, it is often easier mathematically to show linear dependence with definition (I). Can you see why? If we
would like to prove linear dependence with definition (II), we need to first choose a vector ~vi and show that
it is a linear combination of the other vectors. However, with definition (I), we don’t need to try to “single
out” a vector to get started with the proof. We can blindly write down the equation α1~v1 + · · ·+αn~vn =~0
and begin our proof from there. On the other hand, definition (II) gives us a more intuitive way to talk about
redundancy. If a vector can be constructed from the rest of the vectors, then this vector does not contribute
any information that is not already captured by the other vectors.

Now we will show that the two definitions are equivalent. This is the first formal proof in the course! We
will walk you through it.2 First, we ask the question, “What does it mean when we say two definitions are
equivalent?” It means that when the condition in definition (I) holds, the condition in definition (II) must

1In case you are unfamiliar with this notation, the ∑ symbol is simply shorthand for addition. For instance, α1~v1 + · · ·+αn~vn
can be written as ∑

n
i=1 αi~vi or ∑i αi~vi, which is a sum over all possible i values. In this instance, ∑ j 6=i α j~v j is the sum over all α j~v j

excluding the αi~vi term, which can also be calculated as α1~v1 + · · ·+αn~vn−αi~vi.
2Note 4 provides a more in depth treatment on how to approach proofs.
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hold as well. And when the condition in definition (II) holds, the condition in definition (I) must also hold.
So there are two directions that we have to show:

(i) To see how definition (II) implies definition (I), we start from the condition in definition (II) — sup-
pose there exist scalars α1, . . . ,αn and an index i such that ~vi = ∑ j 6=i α j~v j. We want to somehow transform
this equation into the form that appears in definition (I). How can we achieve that? We can move ~vi to the
right:

~0 =−1×~vi +∑
j 6=i

α j~v j. (1)

Now setting αi =−1, we have

~0 = αi×~vi +∑
j 6=i

α j~v j = ∑
j

α j~v j. (2)

Since αi =−1, at least one of the α j terms is not zero, and the condition in definition (I) is satisfied.

(ii) Now let’s show the reverse — that definition (I) implies definition (II). Suppose the condition in defini-
tion (I) is true. Then there exist scalars α1, . . . ,αn such that α1~v1 + · · ·+αn~vn = 0 and not all αi’s are equal
to zero. Since at least one of the αi’s is nonzero, let’s assume that α1 is nonzero since we can always reorder
terms in the summation because addition is commutative. Now how do we get the equation into the form
identical to that in definition (II)? Observe that if we move α1~v1 to the opposite side of equation and divide
both sides by α1, we have

~v1 = ∑
j 6=1

(
α j

α1

)
~v j. (3)

We see that this is identical to the second definition. (In our proof, we made the assumption that α1 6= 0.
However, notice that we could as well have supposed that α2 6= 0, α3 6= 0, or any index i so that αi 6= 0. The
convention is to set the first index, in this case 1, to be nonzero. In mathematical texts, we typically write
“Without loss of generality (W.L.O.G.), we let α1 6= 0.”)

Now that we have introduced the notion of linear dependence, what does it mean to be linearly independent?

3.1.2 Linear Independence
Definition 3.3 (Linear Independence): A set of vectors is linearly independent if it is not linearly depen-
dent. More specifically, from the first definition of linear dependence we can deduce that a set of vectors
{~v1, . . . ,~vn} is linearly independent if α1~v1 + · · ·+αn~vn =~0 implies α1 = · · ·= αn = 0.

Let’s see some simple examples of linear dependence and linear independence.

Example 3.1 (Linear dependence of 2 vectors): Consider vectors ~a =

[
2
1

]
and~b =

[
4
2

]
. These vectors

are linearly dependent because we can write~b as a scaled version of~a:

~b =

[
4
2

]
= 2×

[
2
1

]
= 2×~a.
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Example 3.2 (Linear independence of 2 vectors): Consider vectors ~a =

[
2
1

]
and~b =

[
1
5

]
. We will show

that the two vectors are linearly independent. Consider scalars α1,α2 such that α1~a+α2~b =~0. We can write
this vector equation as a system of linear equations:

α1~a+α2~b =~0

⇒α1

[
2
1

]
+α2

[
1
5

]
=

[
0
0

]
⇒
[

2α1
α1

]
+

[
α2
5α2

]
=

[
0
0

]
⇒
[

2α1 +α2
α1 +5α2

]
=

[
0
0

]
⇒

{
2α1 +α2 = 0
α1 +5α2 = 0

Solving this system of linear equations with Gaussian elimination yields a unique solution,
[

α1
α2

]
=

[
0
0

]
.

By definition,~a and~b are linearly independent.

Additional Resources For more on the definition of linear dependence, read Strang pages 164-
167 or read Schuam’s pages 121-124. For additional practice with these ideas, try Schuam’s
Problems 4.17 to 4.22, and 4.89 to 4.96.

3.1.3 Linear Dependence and Systems of Linear Equations

Previously, we saw that a system of linear equations can have zero solutions, a unique solution, or infinitely
many solutions. Is there a way to tell what kind of solution a system of linear equations has without running
Gaussian elimination or explicitly solving for the solution? Yes! Recall that a system of linear equations
can be written in matrix-vector form as A~x =~b, where A is a matrix of variable coefficients,~x is a vector of
variables, and~b is a vector of values that these weighted sums must equal. We will show that just looking at
the columns or rows of the matrix A can help tell us about the solutions to A~x =~b.

Theorem 3.1: If the system of linear equations A~x =~b has an infinite number of solutions, then the
columns of A are linearly dependent.

Let’s see why this is the case: If the system has infinite number of solutions, it must have at least two
distinct solutions. Let’s call them ~x1 and ~x2. (Note that ~x1, ~x2 are full vectors, not vector elements.) Then ~x1
and ~x2 must satisfy

A~x1 =~b (4)

A~x2 =~b. (5)
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Subtracting the first equation from the second equation, we have A(~x2−~x1) =~0. Let ~α =

α1
...

αn

= ~x2−~x1.

Because ~x1 and ~x2 are distinct, not all αi’s are equal to zero. Let the columns of A be ~a1, . . . , ~an. Then,
A~α = ∑

n
i=1 αi~ai =~0. By definition, the columns of A are linearly dependent.

Note that in this proof, we used the property of matrix multiplication that A~α = ∑
n
i=1 αi~ai. We scale each

column and add them together. In other words, matrix-vector multiplication is a linear combination of
columns. This property is often a useful way to think about matrix multiplication. The following example
might help: a1 b1 c1

a2 b2 c2
a3 b3 c3

α1
α2
α3

=

α1a1 +α2b1 +α3c1
α1a2 +α2b2 +α3c2
α1a3 +α2b3 +α3c3

= α1

a1
a2
a3

+α2

b1
b2
b3

+α3

c1
c2
c3


Theorem 3.2: If the columns of A in the system of linear equations A~x = b are linearly dependent,
then the system does not have a unique solution.

Let’s walk through this proof step by step: we’ll start by assuming we have a matrix A with linearly de-
pendent columns, and then we will show that this means that the system does not have a unique solution.

Since we are interested in the columns of A, let’s start by explicitly defining the columns of A:

A =

 | | |
~a1 ~a2 . . . ~an

| | |

 ,
We’ve defined A to have linearly dependent columns, so by the definition of linear dependence, there exist
scalars α1, . . . ,αn such that α1~a1 + . . .+αn~an =~0 where not all of the αi’s are zero. We can put these αi’s
in a vector

~α =

α1
...

αn


and by the definition of matrix-vector multiplication, we can compactly write the expression above:

A~α =~0

where ~α 6=~0.

Recall that we are trying to show that the system of equations A~x =~b does not have a unique solution. We
know that systems of equations can have either zero, one, or infinite solutions. If our system of equations
has zero solutions, then it cannot have a unique solution, so we don’t need to consider this case. Now let’s
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consider the case where we have at least one solution,~x:

A~x =~b

A~x+~0 =~b

A~x+A~α =~b

A(~x+~α) = b

Therefore, ~x+~α is also a solution to the system of equations! Since both ~x and ~x+~α are solutions, and
~α 6=~0, the system has more than one solution. We’ve now proven the theorem.

Note that we can add any multiple of ~α to~x and it will still be a solution – therefore, if there is at least one
solution to the system and the columns of A are linearly dependent, then there are infinite solutions. Let’s
think about why this makes sense intuitively. In an experiment, each column in matrix A represents the
influence of each variable xi on the measurements. If the columns are linearly dependent, this means that
some of the variables influence the measurement in the same way, and therefore cannot be disambiguated.
The next example illustrates this idea.

Example 3.3 (Intuition): Suppose we have a black and white image with two pixels. We cannot directly
see the shade of each pixel, but we can measure how much light the two pixels absorb in total. Can we
figure out the shade of each pixel? Let’s model this as a system of linear equations. Suppose pixel 1 absorbs
x1 units of light and pixel 2 absorbs x2 units of light. Our measurement indicates that total amount of light
absorbed by the image are 10 units of light. Then we could write down the equation,

x1 + x2 = 10. (6)

Written in matrix form, we have

[
1 1

][x1
x2

]
=
[
10
]
. (7)

We see that the columns are
[
1
]

and
[
1
]
. The total amount of light absorbed is influenced by 1 unit of x1 and

1 unit of x2. However, we cannot pin down the exact influence by x1 and x2 because if pixel 1 absorbs c units
less, we can just have pixel 2 absorb c units more. This is connected with the fact that the two columns are
linearly dependent — if one pixel absorbs less, it is possible to find a way such that the other pixel absorbs
more to make up for the loss (the column of that pixel can be written as a linear combination of the columns
of the other pixels).

This result has important implications to the design of engineering experiments. Often times, we can’t
directly measure the values of the variables we’re interested in. However, we can measure the total weighted
contribution of each variable. The hope is that we can fully recover each variable by taking several of
such measurements. Now we can ask: “What is the minimum number of measurements we need to fully
recover the solution?” and “How do we design our experiment so that we can fully recover our solution
with the minimum number of measurements?” Consider the tomography example. We are confident that
we can figure out the configuration of the stack when the columns of the lighting pattern matrix A in A~x =~b
are linearly independent. On the other hand, if the columns of the lighting pattern matrix are linearly
dependent, we know that we don’t yet have enough information to figure out the configuration. Checking
whether the columns are linearly independent gives us a way to validate whether we’ve effectively designed
our experiment.

EECS 16A, Fall 2021, Note 3 5



3.2 Row Perspective
(Note that this section is optional for the course.)

So far, we have seen a number of results relating the columns of a matrix to its corresponding system of
linear equations. But what about the rows? Intuitively, each row represents some measurement: for example,
if our linear system is a1 b1 c1

a2 b2 c2
a3 b3 c3

α1
α2
α3

 ,
then the variables we want to measure are α1, α2, and α3, and the second row represents the measurement
a2α1 + b2α2 + c2α3. If we take less than 3 measurements, then of course we cannot recover all three
variables. So suppose we take 3 or more measurements. If the number of measurements taken is at least
the number of variables and we still cannot completely determine the variables, then at least one of our
measurements must be redundant (it doesn’t give us any new information). This intuition suggests that
the number of variables we can recover is equal to the number of unique measurements, or the number of
linearly independent rows.

While this is an intuitive argument, we need a formal proof to be sure of the reasoning. This formal proof
will come in a later note when we talk about rank.

Note that we now have two perspectives: in the matrix, each row represents a measurement, while each
column corresponds to a variable. Therefore, if the columns are linearly dependent, then we have at least
one redundant variable. From the perspective of rows, linear dependency tells us that we have one or more
redundant measurements.

3.3 Span
Let’s introduce span, a closely related concept to linear dependence that will be used throughout this course.

Definition 3.4 (Span): The span of a set of vectors {v1, . . . ,vn} is the set of all linear combinations of
{v1, . . . ,vn}. We can write this mathematically as

span(v1, . . . ,vn) =

{
n

∑
i=1

αi~vi |αi ∈ R

}

We can now rephrase our second definition of linear dependence: A set of vectors is linearly dependent if
any one of the vectors is in the span of the remaining vectors.

We should also be aware of the following annoying bit of jargon: that when given a matrix A, the span,
range, and column space of A all refer to the span of the columns of A!

Additional Resources For more on linear span, read Schaum’s pages 119-121. For additional
practice with these ideas, try Problems 4.13 to 4.16, 4.66, 4.69, and 4.83 to 4.88.
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Example 3.4 (Span Practice): Let’s see how to solve problems involving the span of a set of vectors.
Consider the three vectors: [

1
2

]
,

[
−3
1

]
,

[
−2
−2

]
.

How can we compute and express their span?

First, let’s try to gain some intuition for these vectors, by plotting them on a set of axes:

−3 −2 −1 1 2 3

−2

2

x1

x2

Intuitively, it seems like linear combinations of these three vectors can reach any point on the plane. Let’s

see if we can justify this rigorously. Consider an arbitrary point
[

a
b

]
on the plane. We’d like to see if we

can write this point as a linear combination of our three vectors - in other words, we’d like to show that no
matter what a and b we pick, we can choose scalars c1, c2, and c3 such that

c1

[
1
2

]
+ c2

[
−3
1

]
+ c3

[
−2
−2

]
=

[
a
b

]
.

Applying the rules of vector algebra that we presented in the previous note to simply the summation on the
left-hand-side, this equation is equivalent to[

(1)c1 +(−3)c2 +(−2)c3
(2)c1 +(1)c2 +(−2)c3

]
=

[
a
b

]
Observe that the above equation is essentially a system of linear equations with three unknowns - c1, c2, and
c3. Writing it in the standard “Ax = b” form, we obtain

[
1 −3 −2
2 1 −2

]c1
c2
c3

=

[
a
b

]
.

Recall our original goal - to show that no matter how a and b are chosen, we can solve for constants c1, c2,
and c3 such that the above equation is satisfied. But now that we have written it in the above form, we know
how to solve it - Gaussian elimination! Remember that since we are trying to solve for the ci as functions
of a and b, a and b should not be treated as unknowns for the purpose of Gaussian elimination, but rather as
arbitrarily chosen constants.
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Observe that the pivot of the first row is already 1, so we can immediately eliminate the coefficient of c1 in
the second row by subtracting twice the first row from the second, to obtain

[
1 −3 −2
0 7 2

]c1
c2
c3

=

[
a

b−2a

]
.

Now, we should scale the second row by a factor of 1/7 in order to get a 1 in the coefficient for c2 in the
second row, so we obtain [

1 −3 −2
0 1 2/7

]c1
c2
c3

=

[
a

(1/7)b− (2/7)a

]
.

Observe that we have now placed our matrix of coefficients in row echelon form, so we can now determine
whether a solution exists. We see here that there are two nonzero rows, no zero rows equating to a nonzero
constant, and three unknowns. Thus, we have a consistent system with fewer equations than unknowns, so
there are an infinite number of solutions, no matter how we choose a and b.

In other words, no matter how a and b are chosen, there is not just one, but an infinite number of ways to

compute a linear combination of our three vectors to reach
[

a
b

]
. Thus, we have shown that our three vectors

span the entirety of two-dimensional space - expressed mathematically,

span
([

1
2

]
,

[
−3
1

]
,

[
−2
−2

])
= R2.

3.4 Practice Problems
These practice problems are also available in an interactive form on the course website.

1. Are the vectors~a =

[
4
3

]
and~b =

[
−1
2

]
linearly independent?

2. Are the vectors~a =

 2
2
−1

,~b =

1
6
2

,~c =

−1
0
1

 linearly independent?

3. Suppose for some matrix A, A~x1 =~b and A~x2 =~b, where ~x1 6=~x2. Are the columns of A linearly
independent?

4. Is~v =

 1
−1
1

 in the span

0
0
1

 ,
1

2
0

 ,
 2

4
−1

?

5. Which of the following are equivalent to span{~v1,~v2}?

(a) span{~v1,~v1 +~v2}
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(b) span{~v1}
(c) span{~v1,~v2−α~v1}
(d) (a) and (b)

(e) (a) and (c)
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