
EECS 16A Designing Information Devices and Systems I
Fall 2021 Lecture Notes Note 5

5.1 Interpretation: Water Reservoirs and Pumps
One way of visualizing matrix-vector multiplication is by considering water reservoirs and water pumps.
We are presenting this example because it is vital, as an engineer, to understand the ideas that we are talking
about in an intuitive way; this intuition often comes from having a series of examples that make sense. After
all, we define mathematical operations the way that we do because these definitions are useful; they don’t
come out of nowhere. The act of doing mathematics and engineering is often about making definitions and
seeing where they lead us, while checking the consistency of these definitions with what we are trying to
model in the real world.

For these examples, we will have three water reservoirs, A,B,C. Let’s say the initial amounts of water they
respectively hold are A0,B0,C0. Next, say we have a system of pumps connecting the reservoirs that move
certain amounts of water between the reservoirs every day. We can represent the reservoirs as the following
vector, where each element describes how much water is currently in that reservoir:A

B
C


Then, we can represent the system of pumps as a matrix:PA→A PB→A PC→A

PA→B PB→B PC→B

PA→C PB→C PC→C


Each element Pi→ j represents the fraction of water in reservoir i that goes into reservoir j the next day. The
matrix acts on the vector just as the pumps act on the reservoirs, performing a transformation — multiplying
a vector representing the distribution of water in one day by the pump matrix will give a vector with the
distribution of water the next day. We call this matrix a state transition matrix. This example can also
extend to matrix-matrix multiplication. Both this pumps and reservoirs example and a similar example
(PageRank — how search engines can use link information to figure out which pages are important) will
show further applications of linear algebra.

5.1.1 Basic Pump

The most basic pump system will move all water from one reservoir into another. Pictorially, we can show
this as follows (blue circles are the reservoirs and arrows represent how the pumps move the water):
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A

B

C

1 1

1

The corresponding matrix-vector multiplication is:0 0 1
1 0 0
0 1 0

A
B
C


Each time the pumps act on the reservoirs, all of the water in reservoir A flows into reservoir B. All of the
water in reservoir B flows into reservoir C. All of the water in reservoir C flows into reservoir A. If A, B,
and C all start with the same amount of water, then the pumps acting on the reservoirs would not change
the amount of water in each reservoir. As an example, let the amount of water in each reservoir initially
be A0,B0,C0. Then we can calculate the amount of water in each reservoir after activating the pumps once
(A1,B1,C1) as follows: A1

B1
C1

=

0 0 1
1 0 0
0 1 0

A0
B0
C0

=

C0
A0
B0



5.1.2 Identity Matrix Pump
What happens when your pump system can be represented as the identity matrix? What does that mean?

If the initial amounts of water in the reservoirs are represented by the vector

A0
B0
C0

, and the identity matrix

represents how the pumps move the water, after one activation of the pumps, nothing changes!A1
B1
C1

=

1 0 0
0 1 0
0 0 1

A0
B0
C0

=

A0
B0
C0



A

B

C1

1

1

5.1.3 Drain
Another special matrix is the zero matrix: 0 0 0

0 0 0
0 0 0


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In terms of the reservoirs, it would be some sort of drain (e.g. an evil monster evaporated all of the water in
the three reservoirs). The zero matrix acting on the reservoirs results in zero water left in each reservoir.

This does not obey water conservation — the total amount of water after the pump matrix is applied will not
equal the initial total — but can still be represented as a matrix.

5.1.4 Conservation of Water

Now let’s look at what happens when pumps move different amounts of water from each reservoir into other
reservoirs. Specifically, let’s work with this diagram:

A

B

C

1
2

3
4

1
4

1
3

1
3

1
2

1
3

Now, let us describe these pumps with this matrix:1
2

1
4

1
3

1
2 0 1

3
0 3

4
1
3


Each element of the matrix still represents a pump and indicates how much water is moved where. The

first row indicates how much of each reservoir contributes to reservoir A when the pumps are activated. The
second row does the same for reservoir B, and the third row is for reservoir C. For example, the upper left
element 1

2 tells us that half of what is in reservoir A will stay in reservoir A. Similarly, the 1
2 on the middle

left tells us that the other half of what was in reservoir A will flow into reservoir B when the pumps turn
on. As we can see, each column of the matrix sums to one. This means the water is conserved (none is
mysteriously lost or gained). The water will either stay in the original reservoir or move to a different one.

This is a useful fact about water moving between pools with no evaporation, but it is not something that is
going to hold in all useful applications of matrices.

After activating the pumps once, how do we know how much water is in each reservoir? That can be
calculated with a matrix-vector product, just as we saw with the simpler pump models:A1

B1
C1

=

1
2

1
4

1
3

1
2 0 1

3
0 3

4
1
3

A0
B0
C0

=

1
2 ·A0 +

1
4 ·B0 +

1
3 ·C0

1
2 ·A0 +0 ·B0 +

1
3 ·C0

0 ·A0 +
3
4 ·B0 +

1
3 ·C0



5.1.5 Matrix Multiplication Examples

Now let’s look at how matrix-matrix multiplication can be applied to water reservoirs and pumps.
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5.1.6 Twin Cities
In this scenario, we have two cities that each have three reservoirs. The pump systems in the cities are
identical. Let’s start with the basic pump system.

A

B

C

1 1

1

(a) City 1

R

S

T

1 1

1

(b) City 2

The pump system can still be represented as a matrix, like before:0 0 1
1 0 0
0 1 0


However, now the pump system acts on two sets of reservoirs instead of just one. Can our pump matrix act
on two vectors representing the reservoirs instead of just one? We can combine the two vectors representing
the water reservoirs in each city into a single matrix, with a column for each reservoir vector as follows:A R

B S
C T


Now, let’s use the pump matrix to find the water distribution in both cities in a single calculation. In City 1,
the reservoirs initially have water amounts A0,B0,C0. In City 2, the reservoirs initially have water amounts
R0,S0,T0. Once the pumps act on the reservoirs, the amount of water in each reservoir can be found through
matrix-matrix multiplication:A1 R1

B1 S1
C1 T1

=

0 0 1
1 0 0
0 1 0

A0 R0
B0 S0
C0 T0

=

C0 T0
A0 R0
B0 S0


If the cities have identical but more complicated pumps (such as the conservation pumps in the previous
example), finding out how the reservoirs change is the same process. All that would be different is the
“pump system” matrix.

What happens if you have the same pump-reservoir system in k cities? To find out how the pumps act on the
reservoirs, you can still use matrix-matrix multiplication. One matrix describes the pumps, while the other
describes the reservoirs. There would be k columns in the reservoir matrix, because each column is a vector
that represents the reservoirs of a certain city.

In this case, we see a matrix acting on another matrix to transform multiple vectors the same way. Because
of this, we can also see why the dimensions of the matrix have certain restrictions. The number of columns
in the pumps matrix must match the number of rows in the reservoir matrix. The pumps matrix acts on each
column of the reservoir matrix to produce a new column for the resulting matrix that describes amount of
water for that city’s reservoirs.
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5.1.7 Activate Pumps Once... And Then Once More
Now, imagine we have one system of pumps for one city with three reservoirs. How can we calculate the
amount of water in each reservoir after activating the pumps twice? From matrix-vector multiplication, we
know how to find the amount after one activation. If matrix A represents the pumps and ~v0 represents the
initial reservoir vector, then ~v1 = A ·~v0 will tell us how much water is in each reservoir after one activation.
Then ~v2 = A ·~v1 will tell us how much water is in each reservoir after the second activation.

But from the reservoirs’ standpoints, how they got from ~v0 to ~v2 does not matter. For all they know, it could
have been some other system of pumps (matrix B) that acted on the initial reservoir vector (~v0) that resulted
in ~v2. This means that one set of pumps acting twice on the reservoirs is equivalent to another matrix acting
on the reservoirs:

A~v1 = ~v2

A(A ·~v0) = B ·~v0

(A ·A)~v0 = B ·~v0

A2 = B

As an example, let’s take the pump system from the conservation example in section 5.1.4:

A =

1
2

1
4

1
3

1
2 0 1

3
0 3

4
1
3

 ,~v0 =

1
1
1


Let’s calculate ~v2:

~v1 =

1
2

1
4

1
3

1
2 0 1

3
0 3

4
1
3

 ·
1

1
1

=

13
12
5
6
13
12


~v2 =

1
2

1
4

1
3

1
2 0 1

3
0 3

4
1
3

 ·
13

12
5
6

13
12

=

10
9
65
72
71
72


For comparison:

B = A2 =

1
2

1
4

1
3

1
2 0 1

3
0 3

4
1
3

 ·
1

2
1
4

1
3

1
2 0 1

3
0 3

4
1
3

=

3
8

3
8

13
36

1
4

3
8

5
18

3
8

1
4

13
36


B ·~v0 =

3
8

3
8

13
36

1
4

3
8

5
18

3
8

1
4

13
36

 ·
1

1
1

=

10
9
65
72
71
72


From this example, we can see that matrix-matrix multiplication results in an equivalent matrix. Pump
system A acting twice on the reservoirs is the same as pump system B acting once on the reservoirs.

5.1.8 A Multitude of Pumps
Another example of matrix-matrix multiplication with these pumps and reservoirs is when two (or more)
different sets of pumps act sequentially on a city’s reservoirs. From the previous example, we know that a
matrix multiplied by another matrix is equivalent to another matrix. That principle can be applied here. So
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if we have Pump System A act on the reservoirs (~v0) and then Pump System B act on the reservoirs, it is the
same as if some other Pump System C acted on the reservoirs:

B · (A ·~v0) = C ·~v0

(B ·A)~v0 = C ·~v0

B ·A = C

5.1.9 Continuous vs. Discrete Pumps
In all of the examples above, we’ve assumed that the pumps act instantaneously. That is, each time the
pumps transfer water, first we calculate how much water will be moved based on the initial water levels in
each reservoir. Then, all of the water is moved instantaneously. (At any given time, water entering reservoir
A is not used in calculating how much water leaves reservoir A.) We can repeat this process (every day,
minute, hour, etc), but each time all the water moves instantaneously. We call this process a discrete time
system because water is transferred only at a discrete times.

While some physical properties happen in discrete time, others happen in continuous time – in other words,
not instantaneously. We can describe continuous time systems with differential equations, which you will
learn more about in EE 16B. But even without these techniques, we can still approximate the solution to a
continuous time system by modeling it as a discrete time system where we take very small steps in time.
Here, small is relative to how long the process takes: if it takes a minute for the pumps to transfer water, we
could calculate the new water levels every second. If we are trying to model how light travels in space, we
might need to calculate a new time step every femptosecond!

5.2 Practice Problems
These practice problems are also available in an interactive form on the course website.

1. Let the state transition matrix

0.5 0.3 0
0 0.5 1

0.4 0.2 0

 represent people moving between three cities. If~x[0] =100
200
100

, find~x[1].

2. Let the state transition matrix

0.5 0.3 0
0 0.5 1

0.4 0.2 0

 represent people moving between three cities. Do

people stay within these three cities?

3. Let the state transition matrix


0.1 0.1 0.4 0.5
0.6 0.15 0 0.2
0.3 0.5 0.3 0.2
0 0.25 0.3 0.1

 represent the transfer of water between differ-

ent buckets. The amount of water in each bucket a, b, c, and d at time n is


3
4

19
1

. How much water is
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in bucket c at time n+1?

4. Consider the web traffic among the search engines given below. Write the state transition matrix for

this system assuming that the state vector is~x[t] =

xGoogle[t]
xYahoo[t]
xBing[t]

.

Google

Bing Yahoo

1
2

1
3

1
6

1
2 1

2

2
3

1
3

5. Is the web traffic system modeled in the previous question conservative, i.e., is the number of web
surfers in the system constant?

6. If a column adds up to a number larger than 1, what does this imply about the corresponding node?

(a) People are leaving the system at that node.

(b) People are entering the system at that node.

(c) The node can exist in a conservative system.

(d) The node has been wrongly modeled in the system.
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