EECS 16A Designing [nformation Devices and Systems |
Fall 2021  Lecture Notes Note 6

0.1 Introduction: Matrix Inversion

In the last note, we considered a system of pumps and reservoirs where the water in each reservoir is
represented as a vector and the pumps, represented as a matrix, act on the reservoirs to move water into
a new state. If we know the current state of the reservoirs, ¥[¢], and we know the state transition matrix
describing the pumps, A, we can find the water at the next time step through matrix-vector multiplication:

V[t + 1] = AV[t]

However, suppose we’d like to find the water in the reservoirs at a previous timestep, V[r — 1]. Is there a state
transition matrix B, that can take us backwards in time?

Vit — 1] = BV[t]

It turns out that the matrix that “undoes” the effects of A is its inverse! In this note, we’ll define matrix
inverses, introduce some properties, and investigate when matrix inverses exist (and when they don’t).

6.1.1 Definition and properties of matrix inverses

Definition 6.1 (Inverse): A square matrix A is said to be invertible if there exists a matrix B such that
AB=BA=1. (D)

where [ is the identity matrix. In this case, we call the matrix B the inverse of the matrix A, which we denote
as AL,

Example 6.1 (Matrix inverse): Consider the 2 X 2 matrix A = [1 ﬂ .ThenA~! = [_21 _1 1] . We can
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Let’s show an important property of matrix inverses:

verify that the following holds
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Theorem 6.1: If A is an invertible matrix, then its inverse must be unique.
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Proof. Suppose B and B are both inverses of the matrix A. Then we have

AB=B1A=1
AB, =B A=1
Now take the equation
AB| =1.

Multiplying both sides of the equation by B, from the left, we have
B (AB)) = B = B;.
Notice that by associativity of matrix multiplication, the left hand side of the equation above becomes
B, (AB;) = (B,A)B| = IB| = By.
Hence we have
B1 = B,.

We see that By and B, must be equal, so the inverse of any invertible matrix is unique.
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Another important property of inverses is that the “left” inverse and the “right” inverse are equal to each

other. In particular

Theorem 6.2: If QP =1 and RQ = I, then P = R. The matrix P can be thought of as the “right” inverse of

Q and the matrix R can be thought of as the “left” inverse of Q.

Proof. We start the proof by noticing that we know two things QP = I and RQ = I. To move ahead, we can
try setting QP = RQ, but we cannot proceed from here, since the multiplication by Q is on different sides.

So instead we take the equation QP = I and multiply both sides on the left by R. This vies

R(QP) =R(I) =R.

Now, using the associative property of matrix multiplication we have that
R(QP) = (RQ)P=IP=P.
Here we used RQ = 1.

Combining (10) and (11) we have that R = P, and we are done.

In discussion, you will see a few more useful properties of matrix inverses.

Some of the next natural questions to ask are:

¢ How do we know whether or not a matrix is invertible?

 If a matrix is invertible, how do we go about finding its inverse?
It turns out Gaussian elimination could help us answer these questions!
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6.1.2 Finding [nverses With Gaussian Elimination

A square matrix M and its inverse M~ will always satisfy the following conditions MM~ =7 and M~'M =
I, where I is the identity matrix.

|11 | b b2
LetM—[2 1]andM _[bm bzz]

We want to find the values of b;; such that the equation MM ~! = I would be satisfied.

11 byy b | |10

2 1 by bpn | |01
Just as we did for solving equations of the form AX = b, we can write the above as an augmented matrix,
which joins the left and right numerical matrices together and hides the variable matrix, as shown below.

1 1|1 0
2 1(0 1

Now, to find the inverse matrix M~! using Gaussian elimination, we have to transform the left numerical
matrix (left half of the augmented matrix) to the identity matrix, then the right numerical matrix (right half
of the augmented matrix) becomes our solution. In equation form MM~! = I, we are transforming M and
I simultaneously using row operations so that the equation becomes IM~! = A, where A is the resulting
numerical matrix from the Gaussian elimination. Since M~! is multiplied by the identity matrix I, the
resulting numerical matrix A must equal to M~!, and we have the values for the elements in our inverse
matrix. We will now do the actual computation below:

1 1|1 0 1 1 1 0 1 1|1 O
[2 1o 1}:R2_2R1:’[0 —1] -2 1];5_1(&)#[0 12 —1]
1 0|—-1 1
iRl_Rzi[o 1| 2 —1}
M~ is the right half of the augmented matrix. Therefore M~! = [ _21 _11 } More generally, for any

n X n matrix M, we can perform Gaussian elimination on the augmented matrix
M I,

If at termination of Gaussian elimination, we end up with an identity matrix on the left, then the matrix on
the right is the inverse of the matrix M.

I, M!

If we don’t end up with an identity matrix on the left after running Gaussian elimination, we know that the
matrix is not invertible.

Knowing if a matrix is invertible can tell us about the rows/columns of a matrix, and knowing about the
rows/columns can tell us if a matrix is invertible - let’s look at how.
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Additional Resources For more on matrix inverses, read Strang pages 83-85 and try Problem
Set 2.5; or read Schuam’s pages 33-34 and try Problems 2.17 to 2.20, 2.54, 2.55, 2.57, and 2.58.

6.2 Connecting inverti]oility with matrix rows and columns

First let’s consider how the rows of the matrix relate to invertibility.

Example 6.2 (Invertibility Intuition — Rows): Suppose we have a black and white image with two pixels.
We cannot directly see the shade of each pixel, but we can measure linear combinations of the light the
two pixels absorb. Define the light absorbed by the two pixels as x; and x,. We take the following two
measurements, yi,ys:

Y1 =X1+Xx2
y2 =2x1+2x2
Written in matrix form:
1 1
y = X 12
y [2 2} X (12)

Can we invert our measurement matrix to solve for the shade of each pixel? No, our second measurement
y2 does not provide any new information, since it is linearly dependent with the first measurement. In
our matrix representation, each measurement corresponds to a row, so we can guess that we need linearly
independent rows to have an invertible matrix.

We won’t prove this rigorously, but we can extend this intuition by examining the Gaussian elimination
method for finding matrix inverses: If we run Gaussian elimination on a matrix M and do not end up with
the identity matrix, this means that the matrix is not invertible. If we don’t get the identity matrix, we will
have a row of zeros, which indicates that the rows of M are linearly dependent.

Now let’s look from the column perspective.

Consider A as an operator on any vector X € R". What does it mean for A to have an inverse? It suggests
that we can find a matrix that "undoes" the effect of matrix A operating on any vector X € R”. What property
should A have in order for this to be possible? A should map any two distinct vectors to distinct vectors in
R”", i.e., AxX) # Ax> for vectors x],x> such that x| # x5.

Consider this example:

Example 6.3 (Invertibility Intuition — Columns):

. 1 1f. . o . . .
Is the matrix A = [O O} invertible? Intuitively, it is not because A can map two distinct vectors into the

o ol B =1lo] +>+lol = w
o o B =2lol =2+ =] »
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We cannot recover the vector uniquely after it is operated by A. This is connected with the fact that the
columns are linearly dependent — different weighted combinations of columns could generate the same
vector.

We can generalize these observations to obtain a couple of theorems. First, it turns out that

Theorem 6.3: If a matrix A is invertible, there exists a unique solution to the equation Ax = b for all
possible vectors b.

Let’s try to prove this. To do so, we need to prove two statements:

1. That there exists at least one solution to the equation Ax = b, and that
2. There exists no more than one solution to the equation Ax = b.

For both of the above statements, b can be any vector in R”. Let’s prove the first statement first. Imagine we
are given a vector b. Consider the candidate solution X = A~ '5. Observe that

—

AX=A(A"'p) = (AA V)b =b.

Thus, our candidate solution satisfies the equation AX = B, so there exists at least one solution to that
equation!

Now, let’s show the second statement - that no more than one solution to the equation AX = b can exist.
Consider a particular solution ¥, so A¥ = b. Pre-multiplying both sides of this equation by A~!, we obtain

AT'AR) =A""h = x=A""D,

so if X exists, it must be the particular vector A~'5. In other words, there exists at most one solution to the
equation Ax = b, so we have proven the second statement.

Now, let’s look at another (related) theorem that also seems to be suggested by our observations.
Theorem 6.4: If a matrix A is invertible, its columns are linearly independent.

Let’s prove this theorem. We know that the statement “the columns of A are linearly independent” is
equivalent to the statement “AX = 0 only when X = 0. This fact follows from the definition of linear
independence: by definition, if Vy,...,V, are linearly independent, then Y ! , x;V; is only 0 when x; = 0.
Using the column perspective of matrix multiplication (covered in Note 3), AX = Y/, x;V; where V; is the
ith column of A. Therefore, A% = 0 only when all x; = 0.

Therefore, we can rephrase what we’re trying to prove as

A~ !exists = (AX =0 only when ¥ = 0)

To prove this, assume that A is invertible. Let v be some vector such that AV = 0:

>
ol

7 = 0 +— left-multiply by A~!
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Hooray! We’ve successfully proven this theorem!

As it turns out, we can actually strengthen both of these results, to obtain equivalence, rather than just
implication.

Theorem 6.5: The following statements are all equivalent for a square matrix A:
1. A is invertible
2. & The equation AX = bhasa unique solution for any b
3. < A has linearly independent columns
4. & A has a trivial nullspace

5. < the determinant of A # 0.

We have shown that

* A is invertible = the equation AX = b has a unique solution for any b.

* A is invertible = A has linearly independent columns

* A is invertible = A has a trivial nullspace.
We have not yet shown implications in the other direction, and have not introduced the definition for a
determinant. We will define a determinant in the coming notes. Even though we have not yet shown that

these statements are equivalent, i.e. the implications go both ways, you may use them as tools to help your
understanding and proving subsequent results. The full proofs of these will be covered in EECS 16B.

0.3 Practice Problems

These practice problems are also available in an interactive form on the course website.

1 0 2
1. Find the inverseof |—1 1 —1
|0 -1 0]
[ 1 0 2
2. Find the inverse of [—1 1 —1].
|0 -1 —1]

3. Suppose A = BC, where B is a 4 x 2 matrix and C is a 2 X 4 matrix. Is A invertible?

(a) Yes, A is invertible.

(b) No, A is not invertible.
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(c) Depends on C only.
(d) Depends on B and C.
4. Let the matrix A be the state transition matrix for some system. Given some state after n steps X[n],
can we always find X[n+ 1]?
(a) Yes, we simply apply the matrix A on X[n].
(b) No, we need to know the intial state X[0].
(c) No, we don’t have enough information about the system.
5. Let the matrix A be the state transition matrix for some system. Given some state after n steps X[n],
can we always find X[n — 1]?
(a) Yes, we can use Gaussian elimination to find the initial state.
(b) Yes, we simply apply the matrix A~! on X{n].

(¢) No, we don’t know whether the matrix A is invertible.

0 0 ] . Given some state after n

.. . L 1
6. Suppose that the state transition matrix for a system is given by [
steps X[n], can we find X[n — 1]?

7. True or False: The inverse of a diagonal matrix, where all of the diagonal entries are non-zero, is
another diagonal matrix.

8. True or False: If A" = 0, where 0 is the zero matrix, for some n € R, then A is not invertible.
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