
Midterm 1 Review
EECS 16A – Fall 2021

Frederic Wang
Dixun Cui

October 2, 2021

Table of contents

1 Vectors

Basic Properties

Vector Spaces & Subspaces

2 Matrix Properties

Matrix Dimensions & Transformations

Matrix Multiplication

Multiplication Properties

3 Gaussian Elimination

Finding solutions to A~x = ~y

Row Reduction Methodology

Applications of Gaussian elimination

Null Space Example

4 Eigenvalue Problems

Conceptual understanding

Eigenvalue problem machinery

5 Transition Matrices

6 Practicing Proofs

7 Exam-Taking Tips

hi

1○ Vectors – Basic Properties

Definition A vector is an ordered list of numbers ~v ∈ Rn.

For example ~x =

[
2
4
5

]
is a vector in R3, and ~b =

[
−3
0

]
is a vector in R2.

Addition Adding together vectors ~a and ~b is only possible if they’re in the same space Rn,
and then follows by adding element-wise.

scalar Multiplication We can multiply any vector ~a by a number α ∈ R and the vector will
carry that multiple element-wise.

~a+~b =

a1
a2
...
an

+

b1
b2
...
bn

 =

a1 + b1
a2 + b2

...
an + bn

 α ~a =

α a1
α a2

...
α an

Distributive The two properties above provide us with the distributive property for vectors

α (~a+~b) = α ~a+ α ~b. Proving this would make for good practice with proofs!

1○ Vectors – Vector Subspaces

Definition A vector space V is a space inside Rn where vectors can live AND must satisfy

closure, meaning for any ~a,~b ∈ Rn and any α, β ∈ R we know α ~a+ β ~b ∈ V .
Take a moment, consider the cases α = β = 0 and α = −1, β = 0.

All vector spaces MUST contain ~0.

Span Any vector space V in Rn can be expressed by a span of vectors (in Rn), which we write

using the notation V = span
{
~v1, ~v2, . . ., ~vm

}
. Formally the span is defined as

span
{
~v1, ~v2, . . ., ~vm

}
:=

{
~v = α1 ~v1 + α2 ~v2 + . . .+ αm ~vm

∣∣∣ α1, α2, . . ., αm ∈ R
}
.

In english this means, “V is the space containing any vector you can dream up by
adding or scaling the vectors within the span”.

1○ Vectors – Vector Subspaces

Span Example Can you match these spans to their graphic renders?

span
{[1/2
−1
−2/3

]}

span
{[−1

0
1/3

]
,

[
0
1
−1/3

]}

Linear Dependence It is possible that a span contains redundant vectors, meaning that
some vector ~v ∈ V can be expressed in multiple ways using the span vectors (for

example: span
{[

1
2

]}
= span

{[
1
2

]
,

[
2
4

]}
, since

[
3
6

]
= 3

[
1
2

]
=

[
1
2

]
+

[
2
4

]
).

Formally, a set of vectors ~v1, ~v2, . . ., ~vm are said to be linearly dependent if it’s
possible to find constants α1, α2, . . ., αm such that

α1 ~v1 + α2 ~v2 + . . . + αm ~vm = ~0 .

Otherwise, the set ~v1, ~v2, . . ., ~vm is linearly independent and forms a basis for V .
NOTE! The dimension of V is the least number of vectors needed to span it, ie. number of basis vectors.

2○ Matrices – as transformations

Dimensions A matrix Am×n =

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 is used (via matrix multiplication)

to map vectors between spaces A~x = ~y, where ~x ∈ Rn and ~y ∈ Rm.
NOTE: m goes down, n goes across (most common notation).
Matrix Am×n maps Rn → Rm.

Transformations Square matrices An×n (where m = n) can be imagined as transformations
which manipulate a vector ~x ∈ Rn. In the past we’ve seen matrices induce rotations,
mirrors, and scalings.

A =

[
1 1 0
0 1 1/2
1 0 1

]

~x =

[
3
1
2

] A~x =

[
4
2
5

]

2○ Matrices – Multiplication

Matrix-Vector Multiplication

A ~x =

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

x1
x2
...
xn

 =

a11 x1 + a12 x2 + . . .+ a1n xn
a21 x1 + a22 x2 + . . .+ a2n xn

...

...
am1 x1 + am2 x2 + . . .+ amn xn

Matrix-Matrix Multiplication We can multiply matrices Am×n and Bp×` (in the order

AB) only if n = p. The resulting matrix of C = AB has dimensions Cm×`.

Think about this: B maps vectors R` → Rp while A maps vectors Rn → Rm, so the mapping of ~x ∈ R` by

AB~x = A(B~x) is only possible when the output from B agrees dimensionally with the input for A.

AB =

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

b11 b12 . . . b1`
b21 b22 . . . b2`
...

...
. . .

...
bn1 bn2 . . . bn`

 =

c11 c12 . . . c1`
c21 c22 . . . c2`
...

...
. . .

...
cm1 cm2 . . . cm`

NOTE! Matrix-matrix multiplication is the general form of matrix-vector multiplication, which you can see if

you consider ` = 1, in which Bn×1 ≡ ~b −→ AB ≡ A~b.

2○ Matrices – Multiplication

Matrix-Matrix Multiplication We can multiply matrices Am×n and Bp×` (in the order
AB) only if n = p. The resulting matrix of C = AB has dimensions Cm×`.

Think about this: B maps vectors R` → Rp while A maps vectors Rn → Rm, so the mapping of ~x ∈ R` by

AB~x = A(B~x) is only possible when the output from B agrees dimensionally with the input for A.

AB =

a11 a12 . . . a1n
a21 a22 . . . a2n
.
..

.

..
. . .

.

..
am1 am2 . . . amn

b11 b12 . . . b1`
b21 b22 . . . b2`
...

...
. . .

...
bn1 bn2 . . . bn`

 =

(a11b11 + a12b21 + . . .+ a1nbn1) c12 . . . c1`

c21 c22 . . . c2`
...

...
. . .

...
cm1 cm2 . . . cm`

NOTE! Matrix-matrix multiplication is the general form of matrix-vector multiplication, which you can see if

you consider ` = 1, in which Bn×1 ≡ ~b −→ AB ≡ A~b.

2○ Matrices – Multiplication

Matrix-Matrix Multiplication We can multiply matrices Am×n and Bp×` (in the order
AB) only if n = p. The resulting matrix of C = AB has dimensions Cm×`.

Think about this: B maps vectors R` → Rp while A maps vectors Rn → Rm, so the mapping of ~x ∈ R` by

AB~x = A(B~x) is only possible when the output from B agrees dimensionally with the input for A.

AB =

a11 a12 . . . a1n
a21 a22 . . . a2n
.
..

.

..
. . .

.

..
am1 am2 . . . amn

b11 b12 . . . b1`
b21 b22 . . . b2`
...

...
. . .

...
bn1 bn2 . . . bn`

 =

c11 c12 . . . c1`

(a21b11 + a22b21 + . . .+ a2nbn1) c22 . . . c2`
...

...
. . .

...
cm1 cm2 . . . cm`

NOTE! Matrix-matrix multiplication is the general form of matrix-vector multiplication, which you can see if

you consider ` = 1, in which Bn×1 ≡ ~b −→ AB ≡ A~b.

2○ Matrices – Multiplication

Matrix-Matrix Multiplication We can multiply matrices Am×n and Bp×` (in the order
AB) only if n = p. The resulting matrix of C = AB has dimensions Cm×`.

Think about this: B maps vectors R` → Rp while A maps vectors Rn → Rm, so the mapping of ~x ∈ R` by

AB~x = A(B~x) is only possible when the output from B agrees dimensionally with the input for A.

AB =

a11 a12 . . . a1n
a21 a22 . . . a2n
.
..

.

..
. . .

.

..
am1 am2 . . . amn

b11 b12 . . . b1`
b21 b22 . . . b2`
...

...
. . .

...
bn1 bn2 . . . bn`

 =

c11 c12 . . . c1`
c21 c22 . . . c2`
...

...
. . .

...
cm1 (am1b12 + am2b22 + . . .+ amnbn2) . . . cm`

NOTE! Matrix-matrix multiplication is the general form of matrix-vector multiplication, which you can see if

you consider ` = 1, in which Bn×1 ≡ ~b −→ AB ≡ A~b.

2○ Matrices – multiplication properties

Associativity Matrix products are always associative, meaning for multiple products we can
freely place the parentheses A(BC) = (AB)C.

· For instance, this implies A(A(A~x)) = (A(AA))~x = (A)3~x.

· The usual matrix dimension requirements must hold: Am×n,Bn×`,and C`×p.

Commutativity Matrix products are generally NOT commutative, meaning AB 6= BA.

· In fact, it’s possible that the product can only exist in one order. For Am×n and
Bp×`, AB is only defined when n = p whereas BA is only defined when ` = m.

· The usual matrix dimension requirements must hold Am×n,Bn×`,and C`×p.

Square Matrices Only for An×n (note m = n) can we meaningfully define an inverse (A)−1

(and only for certain matrices...) for A, or the eigenvalue problem A~v = λ~v.

2○ Matrices – Extra tid-bits

Inverse properties Consider matrices An×n and Bn×n:

· If either A or B has no inverse, then neither AB nor BA will have an inverse.

· Otherwise (AB)−1 = B−1A−1 and (BA)−1 = A−1B−1.

· Generally, (A + B)−1 6= A−1 + B−1.

Column Space The columns of a matrix Am×n span a vector-space we call the column space
of A. It is sometimes called the range of A since we can think of A~x as

A~x =

↑ ↑ ↑

~a1 ~a2 . . . ~an

↓ ↓ ↓

x1
x2
...
xn

 = x1

↑

~a1

↓

+ x2

↑

~a2

↓

+ . . .+ xn

↑

~an

↓

 ,
which effectively defines ~x as coefficients for summing vectors ~aj in the column space.

If there is no solution to A~x = ~b, we could say that ~b lies outside of the column space.

3○ Gaussian Elimination – Systems of equations

Systems of equations As we had seen in the beginning, a matrix-vector product lets us

easily write down a system of equations into the form A~x = ~b. For example:

x− 2y + 3z + w = 20
5x+ y − 2w = 0 −→

6y − z = −7
x+ y + z + w = −2

1 −2 3 1
5 1 0 −2
0 6 −1 0
1 1 1 1

xyz
w

 =

20
0
−7
−2

This prescription lets us systematically add/subtract/scale these equations until we
can identify the solution for x, y, z, and w.

· If there are equal unknowns and unique equations, then there is a unique solution

~x for A~x = ~b.

· If there are fewer unique equations than unknowns and the equations do not
contradict each other, then there are infinite solutions.

· If there are more unique equations than unknowns or the equations contradict
each other, then there is no solutions.

3○ Gaussian Elimination – Systems of equations

Conditional cases –
– 1 – If there are equal unknowns and unique equations, then there is a unique solution

~x for A~x = ~b.[
1 1
1 0

] [
x
y

]
=

[
1
−2

] [−1 1
0 1
1 −2

] [
x
y

]
=

[
0
1
−1

]

– 2 – If there are fewer unique equations than unknowns and the equations do not
contradict each other, then there are infinite solutions.[

1 1 0
0 0 1

] [x
y
z

]
=

[
3
−2

]

– 3 – If there are more unique equations than unknowns or the equations contradict
each other, then there is no solutions.[−1 1

0 1
1 −2

] [
x
y

]
=

[
0
1
2

] [
1 1 0
1 1 0

][x
y
z

]
=

[
3
−2

]

3○ Gaussian Elimination – Method

Formal Method –

– 0 – Note: A pivot is an element equal to 1 where every term to its left or down is zero.

– 1 – Start with the top left term (the assumed pivot), then scale the row so this
left-most term equals one.
– If the left-most term is zero, then swap with the next-highest row holding a nonzero left-most term.

– If the entire column has only zeros, this column has no pivots. Restart step 1 assuming the pivot is

over right one column.

– 2 – Subtract (a scaling of) this row from all the others below it in a way that cancels
any nonzero terms below the pivot to zero.

– 3 – Now we have created a pivot. The next candidate pivot is down one and right one.
Repeat from step 1 treating this new pivot as the left-most term.

Example –

1
2
x+ y − 1

4
z − w = 1

2x+ 4y − z − w = 1

−3x− 6y + z − 4w = 1

−→
[
1/2 1 −1/4 −1
2 4 −1 −1
−3 −6 1 −4

]xyz
w

 =

[
1
1
1

]
−→

[
1/2 1 −1/4 −1 1
2 4 −1 −1 1
−3 −6 1 −4 1

]

3○ Gaussian Elimination – Method

Example –[
1/2 1 −1/4 −1 1
2 4 −1 −1 1
−3 −6 1 −4 1

]
R1 → 2R1−−−−−−−−−−−−−→

[
1 2 −1/2 −2 2
2 4 −1 −1 1
−3 −6 1 −4 1

]

R2 → R2 − 2R1−−−−−−−−−−−−−−−−→

[
1 2 −1/2 −2 2
0 0 0 3 −3
−3 −6 1 −4 1

]

R3 → R3 + 3R1−−−−−−−−−−−−−−−−→

[
1 2 −1/2 −2 2
0 0 0 3 −3
0 0 −1/2 −10 7

]

R2 ↔ R3−−−−−−−−−−−−→

[
1 2 −1/2 −2 2
0 0 −1/2 −10 7
0 0 0 3 −3

]

R2 → −2R2−−−−−−−−−−−−−−→

[
1 2 −1/2 −2 2
0 0 1 20 −14
0 0 0 3 −3

]

R3 → (1/3) R3−−−−−−−−−−−−−−−→

[
1 2 −1/2 −2 2
0 0 1 20 −14
0 0 0 1 −1

]
�

3○ Gaussian Elimination – Applications

3 key applications of Gaussian elimination (row-reduction procedure):

1 – Solving systems of linear equations –

As in prior slides, we can find ~x for which A~x = ~b or identify whether there are infinite

or no solutions. To do so we row reduce the augmented form
[

A
∣∣ ~b].

2 – Computing the null-space (check linear independence) –

The null space of a matrix A is the vector subspace V with ~x ∈ V for which A~x = ~0.

This is a particular case where ~b = ~0, so we row-reduce
[

A
∣∣ ~0].

NOTE: You can drop the right side of the augmented form here, since row operations will never alter ~0.

· If we find no zero row from A, the null space V = ~0 only contains the origin point.
In this case we have proven A columns (and rows) constitute linearly independent
vectors.
· Else the zero row(s) will motivate choosing the free parameter(s) within ~x, leading

us to a span of vectors defining the null space.

3 – Identifying inverses –
Provided A’s null space is V = ~0 AND A is square (m = n), we can compute an
inverse matrix (A)−1 for which (A)−1A = I. We use row reduction on the augmented
form

[
A
∣∣ I
]
, but go further after getting pivots until

[
I
∣∣ A−1

]
.

3○ Gaussian Elimination – Finding a null space

Get the null space for A3×5 =

[
1 3 0 2 0
2 6 1 8 −1
0 0 1 4 4

]
, solving ~x ∈ Null(A) such that A~x = ~0.

– 1 – Row reduction –[
1 3 0 2 0 0
2 6 1 8 −1 0
0 0 1 4 0 0

]
R2 → R2 − 2R1−−−−−−−−−−−−−→

[
1 3 0 2 0 0
0 0 1 4 −1 0
0 0 1 4 0 0

]
R3 → R3 − R2−−−−−−−−−−−−−→

[
1 3 0 2 0 0
0 0 1 4 −1 0
0 0 0 0 1 0

]
– 2 – choosing free parameters –

Work from the bottom row up!
· The bottom row declares x5 = 0.

· The middle row still has 2 unknowns! We can set either x3 or x4 to a free
parameter, here we’ll choose x4 = α for α ∈ R. Then by plugging in we find
x3 + 4α− 0 = 0 → x3 = −4α.

· The top row also has 2 unknowns x1 and x2! Here we choose x2 = β for β ∈ R.
This lets us solve for x1 from the top x1 + 3β + 0 + 2α+ 0 = 0→ x1 = −2α− 3β.

– 3 – formalizing span describing the space –
Lastly we factor ~x by α and β to identify the span:

~x =

−2α− 3β

β
−4α
α
0

 =

−2α
0
−4α
α
0

+

−3β
β
0
0
0

 = α

−2
0
−4
1
0

+β

−3
1
0
0
0

 −→ Null(A) = span

−2
0
−4
1
0

 ,

−3
1
0
0
0

4○ Eigenvalue Problems – Conceptual basics

Definition An eigenvalue λ and corresponding eigenvector ~v ∈ Rn (for ~v 6= ~0) for the square
matrix An×n satisfy the eigenvalue problem: A~v = λ~v.

Casually stated... “For some matrix A, there are some vectors ~v for which A~v looks just
like a scaling of ~v by some number λ”.

Ground rules –

· An×n has between 1 and n eigenvalues λ.
Algebraically there are ALWAYS n eigenvalues, but some can repeat, so like λ1 = λ2.

· Each eigenvalue λ has a nonempty eigenspace of vectors satisfying A~v = λ~v, which
is ultimately the null space of (A− λI).

NOTE! This is because A~v = λ~v ≡ λI~v → A~v − λI~v = ~0 → (A− λI)~v = ~0.

NOTE! To get eigenvectors, we must FIRST identify the eigenvalues.

4○ Eigenvalue Problems – Machinery

Solving for eigenvalues The key lies in rearranging A~v = λ~v → (A− λI)~v = ~0.

· This tells us we’ve found a λ once A− λI has a nonzero null-space.

· Randomly trying different λ’s and row-reducing would be brutal.

· So far, we can only compute A2×2 =

[
a b
c d

]
eigenvalues λ using this theorem:

(A−λI) has a nonzero null space only if det(A−λI) := (a−λ)(d−λ)− bc ≡ 0.

· det(A− λI) is called the characteristic polynomial of A, and one can expand this
expression into a form λ2 +αλ+β = 0 which is solved using the quadratic formula,

λ = − 1
2
α± 1

2

√
α2 − 4β. Note there are always two roots!

Eigenvalues can be complex if α2 − 4β < 0 (recall z = x + iy ∈ C, and i2 = −1).

Just notice
√
α2 − 4β =

√
(−1)(4β − α2) = i

√
4β − α2.

Solving for eigenvectors Once the eigenvalues are known (or given), the eigenspace for
each λ can be identified as the null space of A− λI, which is something we’ve solved
often using Gaussian elimination!

5○ Transition Matrices

T =

[
3/4 1/2
1/4 1/2

]

Definition Flow problems involve some initial state vector ~x[1], in the case above

~x[1] =

[
xA[1]
xB [1]

]
, and the state after one iteration becomes ~x[2] = T~x[1] where T is the

transition matrix.

· If the columns of T each sum to 1, the system is conservative
(eg. xa[n] + xb[n] = xa[n+ 1] + xb[n+ 1]).

· The inverse of T (noted as T−1~x[n+ 1] = ~x[n]) does not have the same network
diagram with flipped arrows, and it may not correspond to a physical process.

· In the limit as n→∞, we approach the steady state solution ~xf of the system
~xf = limn→∞Tn~x[1]. This steady state should satisfy T~xf = ~xf .

5○ Transition Matrices

Let us focus on the transition matrix problem now for a matrix M (which may not be
conservative) with eigenvalues in mind...

M(M~v) = M(λ~v) = λM~v = λ2~v

Eigenvalue relations –
Suppose M3×3 has 3 eigenvalues |λ1| < 1, λ2 = 1, and |λ3| > 1, and consider an initial
state ~x[1] = α~v1 + β~v2 + γ~v3. Expanding a vector into eigenvectors is very powerful...

~x[2] = M~x[1] = α(M~v1) + β(M~v2) + γ(M~v3)
= (λ1α) ~v1 + β ~v2 + (λ3γ) ~v3

~x[n+ 1] = M(M(. . .(M~x[1]). . .)) = Mn~x[1] = α(λ1)n ~v1 + β ~v2 + γ(λ3)n ~v3

· We find our steady-state vector ~xf depends on our initial state!

~xf = lim
n→∞

~x[n+ 1] = β ~v2 + γ(∞) ~v3

6○ Proofs

Proofs for vectors, matrices, or eigenvalue properties can be extremely helpful in organizing
concepts in your head, and being able to formalize a proof is a valuable skill to learn early!

Claim: Given a matrix An×n with unequal eigenvalues λ1 6= λ2 and corresponding
eigenspaces V1,V2, the bases of V1 and V2 are linearly independent from each other.

Proof by Contradiction: –
· Suppose the bases are linearly dependent on each other, in which case one could

select ~v1 ∈ V1 and ~v2 ∈ V2 such that ~v1 = α ~v2 for some α ∈ R.

· Note: Every vector space contains the zero vector ~0 by definition, thus we may
exclude the cases where ~v2 = ~0 and where α = 0, since either claim would imply
~v1 = ~0 which is in V1 trivially.

~0 = M ~v1 − M ~v1
λ1 ~v1 − M(α ~v2)
λ1(α ~v2) − α(M~v2)
α λ1 ~v2 − α (λ2 ~v2) = α (λ1 − λ2) ~v2

· The only possible way we can reconcile our result is if λ1 = λ2, but that
contradicts our setup! Thus there is no way to select a ~v1 ∈ V1 and ~v2 ∈ V2 so that
they’re linearly dependent; we’ve proven the claim!! �

7○ General Tips – For a smooth exam experience

Keep Moving –
If you get stuck on a question, move on and then come back. Try to spend your time
answering things you know well, and feel free to skip parts if you get stuck. You can
always go back to the tougher parts if you have time.

Show your work –
Be aware that you can only assume things that were shown on homework and in class.
You cannot reference some theorem that was not covered.

Good Luck :)

Voltage Divider Note, the resistors MUST be in SERIES to
use this equation

Identifying nodes

● A node is anywhere in a circuit that is at the same potential.
● Wires don’t change your potential, only crossing components do that
● Start somewhere and start coloring until you hit a component. Turn around

and color in a different direction. When you’ve colored everywhere, start
somewhere else with a different color

Red = 1 node
Blue = 1 node
Green = 1 node
3 nodes total!

KVL/KCL

KVL/KCL

Circuit Analysis Steps

1. Label ground node
2. Label other nodes
3. Label currents through non-wire elements
4. Add +/- labels for elements
5. Set up unknowns and system of equations. Unknowns are your element

currents and node potentials.
6. Use KCL to fill in equations
7. Use I-V relationships/voltage potentials of non-wire elements to generate

more equations
8. Solve the system!

Circuit Analysis Example

Pumps Problem

	Logistics
	Vectors
	Basic Properties
	Vector Spaces & Subspaces

	Matrix Properties
	Matrix Dimensions & Transformations
	Matrix Multiplication
	Multiplication Properties

	Gaussian Elimination
	Finding solutions to A=
	Row Reduction Methodology
	Applications of Gaussian elimination
	Null Space Example

	Eigenvalue Problems
	Conceptual understanding
	Eigenvalue problem machinery

	Transition Matrices
	Practicing Proofs
	Exam-Taking Tips

