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@ Vectors — Basic Properties

Definition A wvector is an ordered list of numbers v € R".

For example T = |:4:| is a vector in R®, and b= [_03] is a vector in R?.
)

Addition Adding together vectors @ and bis only possible if they’re in the same space R",
and then follows by adding element-wise.

scalar Multiplication We can multiply any vector @ by a number a € R and the vector will
carry that multiple element-wise.

al by a1 + by o ay

R az ba as + ba a as
i+h = n _ ad =

an bn an + bn Q Qn

Distributive The two properties above provide us with the distributive property for vectors
« ((_i-i- b) =« 6:+ o b. Proving this would make for good practice with proofs!



@ Vectors — Vector Subspaces

Definition A wector space V is a space inside R" where vectors can live AND must satisfy
closure, meaning for any @,b € R" and any «, 8 € R we know a a+ b € V.

Take a moment, consider the cases a = 8 =0 and a = —1,8 = 0.

All vector spaces MUST contain 0.

Span Any vector space V in R" can be expressed by a span of vectors (in R™), which we write

using the notation V = span{ﬁl, Vs, ,17m}. Formally the span is defined as

span{f)’l,ffz, ,ﬁm} = {Uzcn U1 + oo Vo + + Qm Um | a1, a2, ,amER}.

In english this means, “V s the space containing any vector you can dream up by
adding or scaling the vectors within the span”.



@ Vectors — Vector Subspaces

Span Example Can you match these spans to their graphic renders?

1/2 R A
i)

-1 0 |
span L?J ’ {—11/3} }

Linear Dependence It is possible that a span contains redundant vectors, meaning that
some vector ¥ € V can be expressed in multiple ways using the span vectors (for

example: Span{ H } = Span{ H , m }, since m =3 H = M + [ﬂ).

Formally, a set of vectors v1, 2, . . ., U, are said to be linearly dependent if it’s
possible to find constants a1, aa, . . ., au, such that

I

—

a1 U1+ g U + + am Uym = 0.

Otherwise, the set 01,02, .. ., U is linearly independent and forms a basis for V.

NOTE! The dimension of V' is the least number of vectors needed to span it, ie. number of basis vectors.



(@ Matrices — as transformations

a1 ai2 a1n
a1 a2 a2n

Dimensions A matrix A™*" = is used (via matrix multiplication)
Am1 am?2 Amn

to map vectors between spaces AT = ¢/, where ¥ € R" and i € R™.
NOTE: m goes down, n goes across (most common notation).
Matrix A™*"™ maps R" — R™.

Transformations Square matrices A"*" (where m = n) can be imagined as transformations
which manipulate a vector ¥ € R". In the past we've seen matrices induce rotations,
mirrors, and scalings.

11 0 Ax A
A= [o 1 1/2]
1 0 1

8
Il
DN = W



(@ Matrices — Multiplication

Matrix-Vector Multiplication
a1l 1 + a2 x2 + ...+ ain Tn
az1 *1 + ag2 x2 + ...+ azp Tn

a1 a2 ... Glp 1

a1 a22 agan xTo
AT = =

aml  Am?2 oo Gmn Tn

aml 1 + am2 2 + ...+ Gmn Tn

Matrix-Matrix Multiplication We can multiply matrices A™*™ and B?** (in the order
AB) only if n = p. The resulting matrix of C = AB has dimensions C™**.

Think about this: B maps vectors RY 5 RP while A maps vectors R” — R™ so the mapping of & € R¢ by
ABZ = A(BZ) is only possible when the output from B agrees dimensionally with the input for A.

a1 a2 ... aip] b1 bi2 b1e c11 c12 ... Cip

a1 a2 ... G2 bo1 ba2 ... by c21  C22 ... Cy
AB = . . . . . . . . E . . .

Aml  Am2 ..  (Gmn b1 bna .. bue Cml Cm2 .. Cmy

NOTE! Matrix-matrix multiplication is the general form of matrix-vector multiplication, which you can see if

you consider £ = 1, in which B"*l=§ — AB = Ab.



(@ Matrices — Multiplication

Matrix-Matrix Multiplication We can multiply matrices A™*™ and B?*¢ (in the order
AB) only if n = p. The resulting matrix of C = AB has dimensions C™**.

Think about this: B maps vectors RY 5 RP while A maps vectors R” — R™ so the mapping of ¥ € R? by
ABZ = A(BZ) is only possible when the output from B agrees dimensionally with the input for A.

a1l ai2 ... ain] [bir bz ... by (a11b11 + a12b21 + ...+ ainbni) c12 .. cig

as1 as2 ... a2n b1 ba2 ... boy o1 Cco2 ...  Cop
AB = = .

aml Qam2 .. Qmn bn1 bn2 ... buy Cm1 Cm2 .. Cmy

NOTE! Matrix-matrix multiplication is the general form of matrix-vector multiplication, which you can see if

you consider £ = 1, in which B"*l=p — AB=Ab



(@ Matrices — Multiplication

Matrix-Matrix Multiplication We can multiply matrices A™*™ and B?*¢ (in the order
AB) only if n = p. The resulting matrix of C = AB has dimensions C™**.

Think about this: B maps vectors RY 5 RP while A maps vectors R” — R™ so the mapping of ¥ € R? by
ABZ = A(BZ) is only possible when the output from B agrees dimensionally with the input for A.

a1l a2 ... aip [bir b1z ... by ci1 cl2 ... cCiyp

a1 a2z ... an | |bar b2z ... by (a21b11 + a22ba1 + ... + a2nbp1) c22 ... c
AB = . . ) . . . ) . = .

am1 Am?2 cee Amn bn1 bn2 cee an Cm1 Cm?2 cee Cmi

NOTE! Matrix-matrix multiplication is the general form of matrix-vector multiplication, which you can see if

you consider £ = 1, in which B"*l=p — AB=Ab



(@ Matrices — Multiplication

AB =

Matrix-Matrix Multiplication We can multiply matrices A™*™ and B?*¢ (in the order

ail

am1

AB) only if n = p. The resulting matrix of C = AB has dimensions C™**.

Think about this: B maps vectors RY 5 RP while A maps vectors R” — R™ so the mapping of ¥ € R? by
ABZ = A(BZ) is only possible when the output from B agrees dimensionally with the input for A.

a2 ... aip] [bir bz ... by c11 c12
aza ... azp | |b21 baa ... by c21 c22
am?2 S Amn bn1 bn2 cee an Cm1 (amlbIQ + amaboa + ...+ amnan)

NOTE! Matrix-matrix multiplication is the general form of matrix-vector multiplication, which you can see if

you consider £ = 1, in which B"*l=p — AB=Ab

C1e

Cme



(@) Matrices — multiplication properties

Associativity Matrix products are always associative, meaning for multiple products we can
freely place the parentheses A(BC) = (AB)C.

- For instance, this implies A(A(AZ)) = (A(AA))Z = (A)3Z.

- The usual matrix dimension requirements must hold: A™*™ B"** and C**?.

Commutativity Matrix products are generally NOT commutative, meaning AB # BA.

- In fact, it’s possible that the product can only exist in one order. For A™*"™ and
BP*‘, AB is only defined when n = p whereas BA is only defined when £ = m.

- The usual matrix dimension requirements must hold A™*" B"** and C**?.

Square Matrices Only for A™*™ (note m = n) can we meaningfully define an inverse (A)™!

(and only for certain matrices...) for A, or the eigenvalue problem Av = Av.



@ Matrices — Extra tid-bits

Inverse properties Consider matrices A™*" and B™*":

- If either A or B has no inverse, then neither AB nor BA will have an inverse.
- Otherwise (AB)™' =B 'A™! and (BA)"'=A"'B™".

- Generally, (A + B)*1 A1+ B

Column Space The columns of a matrix A™*" span a vector-space we call the column space
of A. It is sometimes called the range of A since we can think of A% as

R IREE T T 0
T2
Az = ap do an = x |d1| +m2 |G2| +.. . 4z |Gn|,
) 1 Lz, 4 4 +

which effectively defines & as coefficients for summing vectors @; in the column space.
If there is no solution to AZ = b, we could say that b lies outside of the column space.



(3@ Gaussian Elimination — Systems of equations

Systems of equations As we had seen in the beginning, a matrix-vector product lets us
easily write down a system of equations into the form AZ = b. For example:

r—2y+3z4+w = 20 1 -2 3 1 x 20
Se4+y—2w = 0 — 5 1 0 =2 |y| _ 0

6y —z = =7 0 6 -1 0 z| T |=7
r+y+z+w = -2 1 1 1 1 w -2

This prescription lets us systematically add/subtract/scale these equations until we
can identify the solution for z, vy, z, and w.

- If there are equal unknowns and unique equations, then there is a unique solution
Z for A7 =b.

- If there are fewer unique equations than unknowns and the equations do not
contradict each other, then there are infinite solutions.

- If there are more unique equations than unknowns or the equations contradict
each other, then there is no solutions.



(3@ Gaussian Elimination — Systems of equations

Conditional cases —
— 1 — If there are equal unknowns and unique equations, then there is a unique solution

7 for AT = E (1)] m ) [ 52} [_?1 _}2] [ﬂ B [_(lj

— 2 — If there are fewer unique equations than unknowns and the equations do not
contradict each other, then there are infinite solutions.

oo )] - [

— 3 — If there are more unique equations than unknowns or the equations contradict
each other, then there is no solutions.

LR bl



®) Gaussian Elimination — Method

Formal Method —

— 0 — Note: A pivot is an element equal to 1 where every term to its left or down is zero.

— 1 — Start with the top left term (the assumed pivot), then scale the row so this
left-most term equals one.
If the left-most term is zero, then swap with the next-highest row holding a nonzero left-most term.
— If the entire column has only zeros, this column has no pivots. Restart step 1 assuming the pivot is
over right one column.
— 2 — Subtract (a scaling of) this row from all the others below it in a way that cancels
any nonzero terms below the pivot to zero.

— 3 — Now we have created a pivot. The next candidate pivot is down one and right one.

Repeat from step 1 treating this new pivot as the left-most term.
Example —
%z +y— iz —w = 1

-1 -1
-3 -6 1 -4

Il

—
N
W~

/2 1 -1/4 -1
20 +4y —z—w

—3r—-—6y+z—4w = 1



®) Gaussian Elimination — Method

Example —
1/2 1 -1/4 —-1]1
2 4 —1 -1 |1 R — 2Ry
-3 —6 1 —4 |1 -

Ro — Ro — 2R3

Rs — R3+3R;

R2<—>R3

RQ — —2R2

Rs — (1/3) R3

[Nyt OO OO

[Nyt

OO N oo N O OoON

[s=Rel )

—-1/2
—-1/2

—-1/2
1
0

20
1

—14
-1




®) Gaussian Elimination — Applications
3 key applications of Gaussian elimination (row-reduction procedure):

1 — Solving systems of linear equations —
As in prior slides, we can find Z for which AZ = b or identify whether there are infinite

or no solutions. To do so we row reduce the augmented form [ A | b }

2 — Computing the null-space (check linear independence) —
The null space of a matrix A is the vector subspace V with # € V for which A% = 0.
This is a particular case where b= 0, so we row-reduce [ A } ] }
NOTE: You can drop the right side of the augmented form here, since row operations will never alter 0.
- If we find no zero row from A, the null space V = 0 only contains the origin point.
In this case we have proven A columns (and rows) constitute linearly independent
vectors.

- Else the zero row(s) will motivate choosing the free parameter(s) within Z, leading
us to a span of vectors defining the null space.

3 — Identifying inverses —
Provided A’s null space is V = 0 AND A is square (m = n), we can compute an
inverse matrix (A)~! for which (A)"'A = I. We use row reduction on the augmented
form [ A | 1 ], but go further after getting pivots until [ I ‘ AL }



®) Gaussian Elimination — Finding a null space

—
O N

1 3 0 2 0
Get the null space for A3%5 = |:2 6 1 8 —1],solving &€ Null(A) such that AZ = 0.

0O 0 1 4 4

— 1 — Row reduction —

3 0 2 01O 1 3 0 2 0|0 1 3 0 2 0
6 1 8 —-1]0 Ry — Ro — 2R, 0 0 1 4 —-11|0 Rs — Rs — Ro 0 0 1 4 -1
o1 4 o000 o014 0|00 0 0 0 1

— 2 — choosing free parameters —
Work from the bottom row up!
- The bottom row declares x5 = 0.

- The middle row still has 2 unknowns! We can set either x3 or x4 to a free
parameter, here we’ll choose 4 = « for & € R. Then by plugging in we find
r3+4a—0=0 — x3 = —4a.

- The top row also has 2 unknowns z; and z2! Here we choose 2 = 3 for 3 € R.

This lets us solve for x; from the top z1 + 38 +0+2a+0=0— 21 = —2a — 30.

— 3 — formalizing span describing the space —
Lastly we factor Z by a and S to identify the span:

—2a — 30 —2a -3 —2 -3 —2 -3

0 B8 0 1 0 1

T = —4o = |—4da|+]| O =a|—4[+8] 0 — Null(A) = span 41,10
o « 0 1 0 1 0

0 0 0 0 0 0 0




(@ Eigenvalue Problems — Conceptual basics

Definition An eigenvalue A and corresponding eigenvector v € R™ (for ¢ # 6) for the square
matrix A"*" satisfy the eigenvalue problem: A¥ = \¥.

A - -
i Av = Av

Casually stated... “For some matriz A, there are some vectors U for which AU looks just
like a scaling of U by some number \”.

Ground rules —
- A™*"™ has between 1 and n eigenvalues \.
Algebraically there are ALWAYS n eigenvalues, but some can repeat, so like A1 = Ag.

- Each eigenvalue A has a nonempty eigenspace of vectors satisfying Av = A\v, which

is ultimately the null space of (A — AI).

NOTE! This is because AT =0 = NI — AT—-ANIT=0 — (A-A)T=0.

NOTE! To get eigenvectors, we must FIRST identify the eigenvalues.



@ Eigenvalue Problems — Machinery

Solving for eigenvalues The key lies in rearranging At =0 — (A - A)v= 0.

- This tells us we’ve found a A once A — AI has a nonzero null-space.

- Randomly trying different A’s and row-reducing would be brutal.

- So far, we can only compute A?*? = {Z Z} eigenvalues A using this theorem:
(A — XI) has a nonzero null space  only if  det(A —XI):=(a—A)(d—X)—bc = 0.

- det(A — AI) is called the characteristic polynomial of A, and one can expand this
expression into a form A% + a)\+ S = 0 which is solved using the quadratic formula,
A= —%a + %\/oﬁ — 4. Note there are always two roots!

Eigenvalues can be complex if a® — 48 <0 (recall z = z + iy € C, and 2 = —1).

Just notice \/a2 — 48 = /(=1)(48 — a?) = i /43 — a2.

Solving for eigenvectors Once the eigenvalues are known (or given), the eigenspace for
each \ can be identified as the null space of A — AI, which is something we’ve solved
often using Gaussian elimination!



(®) Transition Matrices

1
4
3 1 o [34 172
4 2 T 1/4 1/2
1
2
Definition Flow problems involve some initial state vector Z[1], in the case above
Z[1] = {fgﬁﬂ , and the state after one iteration becomes #[2] = TZ[1] where T is the

transition matrix.
- If the columns of T each sum to 1, the system is conservative
(eg. za[n] +xp[n] = za[n+ 1]+ zpn+1] ).

- The inverse of T ( noted as T~ #[n + 1] = #[n]) does not have the same network
diagram with flipped arrows, and it may not correspond to a physical process.

- In the limit as n — oo, we approach the steady state solution &y of the system
Zy = limp oo T"Z[1]. This steady state should satisfy TZy = Zy.



(®) Transition Matrices

Let us focus on the transition matrix problem now for a matrix M (which may not be
conservative) with eigenvalues in mind...

M(M%) = M(A\7) = AM% = \*¢

Eigenvalue relations —
Suppose M?*® has 3 eigenvalues |\1]| < 1, A2 = 1, and |A3] > 1, and consider an initial
state Z[1] = ath + BV2 + yUs. Expanding a vector into eigenvectors is very powerful...

F2 = MAL] = (M) + BME) + (M)
= (M) 01 + B2 + (A37y) 3

Fn+1 = MM(. (M&1)..) = M"#1] = a(\)" & + B8 + y(ha)" B
- We find our steady-state vector Zy depends on our initial state!

Tf = nli_)rrolof[n—i— 1] = B 02 + v(o0) Us



(6 Proofs

Proofs for vectors, matrices, or eigenvalue properties can be extremely helpful in organizing
concepts in your head, and being able to formalize a proof is a valuable skill to learn early!

Claim: Given a matrix A™*" with unequal eigenvalues \; # A2 and corresponding
eigenspaces V1,Va, the bases of V1 and V2 are linearly independent from each other.

Proof by Contradiction:
Suppose the bases are linearly dependent on each other, in which case one could
select U7 € V1 and U2 € V5 such that U7 = a U2 for some o € R.

. Note: Every vector space contains the zero vector 0 by definition, thus we may
exclude the cases where v> = 0 and where o = 0, since either claim would imply
1 = 0 which is in V; trivially.

0 = M@ — M
)\1 171 — M(a 172)
)\1(Ot 172) — OC(M’UQ)
Oé)\1 ’172 — Oé()\z 172) = Oc()q—)\z) 172

- The only possible way we can reconcile our result is if A1 = A2, but that
contradicts our setup! Thus there is no way to select a v1 € Vi and 72 € V2 so that
they’re linearly dependent; we’ve proven the claim!! [



(D General Tips — For a smooth exam experience

Keep Moving —
If you get stuck on a question, move on and then come back. Try to spend your time
answering things you know well, and feel free to skip parts if you get stuck. You can
always go back to the tougher parts if you have time.

Show your work —
Be aware that you can only assume things that were shown on homework and in class.

You cannot reference some theorem that was not covered.

Good Luck :)



Voltage Divider
Vi =IR

Note, the resistors MUST be in SERIES to
use this equation

_|_
Ry
V R
R 1 V = V
) g — "R+ Ry
+
VR, & R




|dentifying nodes

e Anode is anywhere in a circuit that is at the same potential.

e \Wires don’t change your potential, only crossing components do that

e Start somewhere and start coloring until you hit a component. Turn around
and color in a different direction. When you’ve colored everywhere, start
somewhere else with a different color

Red = 1 node
Blue = 1 node
Green = 1 node
3 nodes total!




KVL/KCL

Sum of Voltages across the elements in a loop equal zero

f'c\[dx"

R Vel

'\Iq‘ VS v 1 vy
- Ny, *

l‘



KVL/KCL

The current flowing into any junction must equal the current flowing out

T, + 1o =0 10\& - .S""". 1(.\-. = L\\ =0
L X ‘SC-\\. = L\g
S\ Yl L\s = 1:\4\
3w :0\5 &\T‘Tﬁ‘“
R ¢ —

'fxa..,.ruZ’.
Em' L\S*I':.

val E]

Telg



Circuit Analysis Steps

Label ground node

Label other nodes

Label currents through non-wire elements

Add +/- labels for elements

Set up unknowns and system of equations. Unknowns are your element

currents and node potentials.

Use KCL to fill in equations

7. Use I-V relationships/voltage potentials of non-wire elements to generate
more equations

8. Solve the system!

LN~

o



Circuit Analysis Example

3. Circuit Analysis (18 points)
For the circuit in the following diagram, answer parts (a) — (e).

You should not change the labels that are already given in the diagram. If you add any additional labels for
your analysis, you should show your labels in the answer sheet for the corresponding part(s).

(a) (3 points) Redraw the circuit diagram in your answer sheet. Following the passive sign convention,
label (i) the current /g through the voltage source Vs, (ii) the current /; through the resistor R, and (iii)
the voltage V3 across the resistor Rj.

(b) (2 points) Write the KVL expression for the loop drawn in the circuit diagram in terms of voltages
Vs, Vi, and V5.

(¢) (2 points) Write the KCL expression at node C in terms of currents /3, /4, and /s as labeled in the
circuit diagram.



Pumps Problem

6. Steady the Traffic (29 points)

(a) (4 points) Your friend wants to study the flow of traffic around the Bay Area and asks for your help.
From her observations, your friend finds that the number of cars in San Francisco, Berkeley, San Jose
and Fremont can be represented in the following way:

.Xs]-‘[n + l] -"SF["]
xgn+1] | _ , | x8[n]
a1 o] (1)
xgln+1] xg[n]

The flow of traffic is represented in the diagram below. Write the transition matrix A corresponding
to this diagram.

0.3

Figure 6.1: A flow diagram to represent how model A transforms state vector ¥[n].



(b) (4 points) Your friend takes measurements of the number of cars at the first 3 cities (San Francisco,
Berkeley, San Jose) during Thanksgiving weekend and finds the following transition matrix:

EECS 16A, Spring 2021, Midterm 1 9

025 0 03
T=1075 1 04
0 0 03

The new state vector is:
Xsg[n]
X[n] = | xg[n] |.
xsy(n]
You are performing some simulations to see how the traffic evolves at each time step. You start your
simulation with 200 cars at San Francisco, 150 cars at Berkeley and 100 cars at San Jose. Calculate
the number of cars at each city in the next time step.



(c) (5 points) It would be helpful for your simulations to know the eigenvectors of this transition matrix.
Calculate the steady state eigenvector associated with the eigenvalue A = 1 for the above matrix
T.

(d) (6 points) Next you are interested in investigating the traffic flows during New Year’s weekend. Your
friend tells you the following information about the transition matrix for this period:

i. The transition matrix is conservative
|

ii. The eigenvector correspondingto A = 1 isv= [0
1
iti. All other eigenvalues |4;| < 1
30
If the initial state vector is ¥[0] = |50 |, what steady state will this system converge to?
20

(e) (10 points) Next, for a new transition matrix S, you investigate the traffic flow of commuters throughout
the year. You calculate the eigenvalues A; = 1, 4> = 4, and A3 = 0.25 with corresponding eigenvectors:

| 0 |
= (0], h=|1],3=]1
| | 0

For the given values of ¥[0], write down whether the system will converge to a non-zero steady
state, decay to zero or keep growing infinitely.

350
i, IfX[0] = | 50
300
15
ii. 16%0] = |10

25



7. A Problem N(o0)-body Can Solve (24 points)

An N-body simulation is a method of modeling the interactions between a set of particles, and it is commonly
implemented in an astrophysics context to study the movements of celestial bodies and galactic formation
under the constraints of gravitational forces. In each timestep, the core algorithm iterates through particle
pairs to calculate the force on each particle and update its current position.

As part of your work in a research lab, you are developing an efficient N-body simulation for the solar
system that exploits computationally fast operations on matrices to speed up runtime (good thing you’re
taking EECS16A!). You represent each body as a vector in 3D space:

L
Il
N xR

You calculate that the position of one particular body — Earth — is updated in the following way during every
timestep:

 x[t+1] = 0.5x[t] +0.7y[t] + 0.3z[t]

 y[t+1] = 0.6y[t] +0.1z[t]

o Z[t+1] = 0.3x[t] + 0.2y[t] + z[t]

1
(a) (4 points) After one timestep, at time ¢ = 1, Earth is located at {2 |. You want to calculate the position
4
of Earth at # = 0. Formulate this problem as a matrix-vector equation in the form AX = b. You do
not need to solve for Earth’s position.



Solution: The system of equations representing the position of Earth between timesteps ¢ and 7 + 1
can be substituted with = 0 and # + 1 = 1 respectively. We can then rewrite the system so X = Pgarn [0]
(the unknown initial position of Earth), b = PEarth|[1] (the known position of Earth at t = 1), and A
represents the coefficients relating pgam[1] to Prarn[0]:

A PEartn 0] = PEarn[1]
0.5 0.7 03] [x[0]] [x[1]
0 06 0.1] |y[0]| = [y[1]

03 02 1|70 |z1]
0.5 0.7 0.3] [x[0] 1
0 06 0.1 |y[o]]| =2/,
03 02 1| |Z[0] 4

substituting for the Earth’s known position at t = 1.



(b) (6 points) You have determined that Neptune’s position in each timestep is updated according to the
following matrix:

1 02 O
N={0 -02 0.1
-1 0 0.1
Xn
You let the simulation run in the background for a while, and at t = n, Neptune is located at |y, | . You
Zn

then realize that you’ve forgotten to record position data since you started! Is it possible to recover
Neptune’s position uniquely at 1 = n— 1? If it is, use Gaussian elimination to find the inverse of
N,N.



Solution: We can use Gaussian elimination to calculate N~! by augmenting the N matrix with the
identity matrix, and row-reducing N until it is transformed into the identity matrix:

1 02 0]100 1 02 0|10 0
f =02 04|01 0|0 —02 0i|lo 1 0|22
1 0 01|00 1 b: B2 Bd|IT B 1
1 02 0|10 07 bW o1 pom
p -2 0ilo 1 0| =25|0 —02 01ln 1 0| =5
0 0 021 11| b o 1|55
"1 0 01|11 07 T o oalT uom]
0 —02 01]/0 1 0 RZ—“’R%[o—zloloom
0 0 1|555 D- 0 1[& & & |
1 0 01| 1 1 0 10011 1 0 1
Ry Ri=R,—1;R3
5 d|l-=s5 5|22 g 1 0 |55 a5 55 | PR
00 1|5 5 5} {0 0 1/5 5 5
1 00/05 05 —05
0 10|25 —25 25
001/5 5 5

The N~! matrix we can use to recover Neptune’s previous positions is:

05 05 -05
N1=125 —-25 25
5 5 5



(c) (8 points) Additionally, you have the following matrix for Pluto:

0.1 0 0.1
0.1 0.1 0.2
(0.2 0.1 03
x[0]
If Pluto is positioned at some unspecified |y[0] | at# = 0, are there any points in R? space that you
2[0]

cannot reach at at r = 1? If so, what is the subspace that Pluto can be located in?
Note: You do not have to provide rigorous justification.



Solution:  Performing Gaussian elimination on Pluto’s update matrix reveals that the rows (and
columns) are linearly dependent, indicating that the columns cannot span R?.

01 0 0.1 01 0 0.1 01 0 0.1
il 6 02 ===510 @] f1] ==——=|0 BbJ Ol ===
02 01 03 02 0.1 03 0 0.1 0.1

01 0 0.1

0 0.1 0.1

0 0 0

Because one row was reduced to 0’s during the process of row-reduction, the subspace Pluto’s position
can be in at t = 1 is two-dimensional. We can select any two column vectors from the matrix to
represent the span of this subspace; a possible solution is:

0.1 0
span< |0.1], (0.1
0.2] 1]0.1



(d) (6 points) After running your simulation repeatedly, you notice that with the current update matrices
you have entered, Venus and Mars are all moving within the same 2D orbital plane. You refer back to
your calculations, but you notice there is a smudge obscuring one element of matrix M:

03 04 0.1 04 06 0.2
V=10 07 07{,M=|-14 0 14
07 1.1 04 0.6 m3 0.8

V and M are the update matrices for Venus and Mars respectively. Fill in the missing matrix element
(denoted by "'m3,'") in a way that would explain the behavior of these 2 planets.



Solution: m3, = 1.4 For both planets to be moving on the same 2D plane within R>, all three update
matrices must contain exactly two linearly independent column vectors that span the plane. These
spans must be equivalent between the independent column vectors for V and M.

We denote C; as the ith column of a mentioned matrix. By inspection, we see that C3 = C; — C;
for V, Cy = C, — (3 for M. This implies that ? = 0.8 4-0.6 = 1.4 in M. Replacing the ? with this value
would create a scenario in which Venus and Mars can reach any position in the 2D plane defined by
the span below:

0.3 0.4
span 0 |, |07
0.7 1.1



8. Proof (10 points)

You are told that a A € R?*? is a conservative transition matrix. Prove that it has an eigenvalue of A = 1.



Solution:  First, we must start with what we know, which is that A € R?*Z is a conservative transition

matrix.
a b
A=l d

Here are two possible ways you can prove this:

wherea+c=1and b+d = 1.

i The more challenging way is to solve directly for the eigenvalues of A using the det(A — AI) =0
formula and substituing in » = 1 —d and ¢ = 1 — a where appropriate.

det(A—AI) = (a—A)(d—A) —bc
=ad—(a+d)A+1%—(1-a)(1—-d)
=ad—(a+d)A+1%>-(1-a—d+ad)
=A2—(a+d)A +(-1+a+d)
=(A-1(A—-(-14+a+d))

From here we can see that A = 1 is a root of this characteristic equation.

ii A quicker method that we may notice is that we are only looking to show that A = 1 is an eigenvalue
of A, not find all eigenvalues. If we assume that A does have eigenvalue of 1, then we know that
det(A —I) = 0. Using our knowledge that b = 1 —d and ¢ = 1 — a we can show this is true.

det(A—I)=(a—1)(d—1)—bc
=(a-1)(d-1)—(1-a)(1-4d)
=0
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