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EECS 16A Designing Information Devices and Systems I
Spring 2021 Final Exam – SOLUTIONS

1. (22 points) Linear Algebra

(a) (4 points) Use Gaussian Elimination to determine if the following system of equations has either no
solution, one solution, or infinite solutions. If there is a single solution please write it explicitly, and
if there are infinite solutions please specify the full set of solutions.

x+ y+ z = 3
4x+3y+2z = 5
7x+3y+4z = 8

Solutions:
First we transcribe the linear system into a matrix form A~x =~b.
From this point we can cast the problem into an augmented form

[
A|~b
]
, which allows us to employ

Gaussian elimination.

A~x =~b −→

1 1 1
4 3 2
7 3 4

x
y
z

=

3
5
8

 −→

 1 1 1 3
4 3 2 5
7 3 4 8


We begin reducing our matrix into row-echelon form: 1 1 1 3

4 3 2 5
7 3 4 8

 R2 → R2−4R1−−−−−−−−−→
R3 → R3−7R1

 1 1 1 3
0 −1 −2 −7
0 −4 −3 −13


 1 1 1 3

0 −1 −2 −7
0 −4 −3 −13

 R3 → R3−4R2−−−−−−−−−→
R2 → −R2

 1 1 1 3
0 1 2 7
0 0 5 15

 R3 → 1
5 R3−−−−−−→

 1 1 1 3
0 1 2 7
0 0 1 3


One can identify a unique solution ~x from this point, since the final row states z = 3, then the second
row states y = 7−2z = 7−6 = 1, and finally the top row says x = 3− y− z = 3−1−3 =−1.

However, you can also continue row reducing back up to yield the identity on the left-hand side: 1 1 1 3
0 1 2 7
0 0 1 3

 R1 → R1−R3−−−−−−−−−→
R2 → R2−2R3

 1 1 0 0
0 1 0 1
0 0 1 3

 R1 → R1−R2−−−−−−−−→

 1 0 0 −1
0 1 0 1
0 0 1 3


Since left side of our augmented form can be row-reduced to the identity, there is a unique solution.
This solution is the right-hand side of the solved augmented form, x =−1, y = 1, and z = 3.

~x =

 −1
1
3

 �
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(b) (4 points) Find the null space N(A) of the following matrix.

A =

[
−6 8 1
3 −1 1

]

Solutions:
Finding the null space of A means we need to find all vectors~x∈R3 that satisfy the expression A~x =~0.
Performing a full row reduction on

[
A|~0
]

yields the following augmented form[
−6 8 1 0

3 −1 1 0

]
R2 → R2+

1
2 R1−−−−−−−−−→

R2 → 1
3 R2

[
−6 8 1 0

0 1 1
2 0

]
R1 → R1−8R2−−−−−−−−−→
R1 → − 1

6 R1

[
1 0 1/2 0
0 1 1/2 0

]
.

Evidently we cannot reach row-echelon form due to the width of this matrix. So to find the null space

for vector ~x =

x
y
z

 we must introduce at least one free parameter z = α; this parameter choice is not

unique, but it is the most obvious/direct choice. From this point we can use the rows in the reduced
form to identify x =−1

2 α and y =−1
2 α . Thus

N(A) = span


−1

2
−1

2
1

 . �

Notice that the span can be specified using any vector within the space (ie. you could have chosen a
different α for the representation).

N(A) = span


−1

2
−1

2
1

 = span


−1
−1
2

 = span


 1

1
−2

 .
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(c) (6 points) Ashwin has lost his op-amp! Let its location in 2D be denoted by the vector~x ∈ R2. Set up
a set of linear equations in the form A~x =~b and solve for~x based on the provided information:

i. It is 2 units away from (1,3).
ii. It is

√
10 units away from (2,4).

iii. It is 3 units away from (−2,1).

Solutions:
From the information, we construct the following system of equations.

(x−1)2 +(y−3)2 = 22 =⇒ x2−2x+ y2−6y+10 = 4 =⇒
(

x2 + y2

2

)
− x−3y =−3 (1)

(x−2)2 +(y−4)2 = 10 =⇒ x2−4x+ y2−8y+20 = 10 =⇒
(

x2 + y2

2

)
−2x−4y =−5 (2)

(x+2)2 +(y−1)2 = 32 =⇒ x2 +4x+ y2−2y+5 = 9 =⇒
(

x2 + y2

2

)
+2x− y =+2 (3)

Note that the position of the op-amp is located at~x =
[

x
y

]
.

Pick an equation to subtract out the x2 and y2 terms.
For example, using the second equation (1)− (2) and (3)− (2) would yield

x+ y = 2

4x+3y = 7,

so one acceptable solution is [
1 1
4 3

]
~x =

[
2
7

]
.

From this stage we can row reduce (R2→ R2− 4R1) and scale (R2 = −1R2) to achieve a sufficiently
reduced matrix and identify~x:[

1 1 2
0 1 1

]
−→ ~x =

[
1
1

]
. �

Technically we could have instead subtracted (1) from the remaining equations, or subtracted (3) from
the others. The only other equation we would gain is (3)-(1) which simplifies to 3x+ 2y = 5. All in
all, the full array of equations that we can derive is presented with a 3×2 system below1 1

4 3
3 2

[x
y

]
=

2
7
5

 .
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(d) (4 points) For this part you will need to sketch vectors on a 2D plane. Make sure your plot clearly
labels the x and y axes.

i. Plot the vector ~v =

[
−3
2

]
. Label the vector and clearly indicate the vector components on the

plot.
ii. On the same graph plot the null space of the matrix A =

[
−3 2

]
.

Solutions:
We plot the vector~v as an arrow. The null space N(A) consists of all vectors~x ∈ R2 (width of A) such
that −3x+ 2y = 0. We can solve this expression for a line on the plane y = 3

2 x, which describes the
null space for~x.

A quicker method for identifying the null-space is to recognize that ~x has to be orthogonal to the
row of A, which is equal to our prior vector~v. Thus the null space is the line perpendicular to~v. The
plot should reflect this.

0

~v NULL(A)

+1 +2 +3 +4

+1

+2

+3

−1−2−3−4

−1

−2

−3
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(e) (4 points) Let~x =
[

1
2

]
and~y =

[
3
4

]
. Compute the following inner product:

〈
2~x+~y,

1
2
~y
〉

Solutions:
Using inner product properties decomposes this expression into〈

2~x+~y,
1
2
~y
〉

=

〈
2~x,

1
2
~y
〉

+

〈
~y,

1
2
~y
〉

= 2 · 1
2
〈~x,~y〉 + 1

2
〈~y,~y〉

= (1)(3) + (2)(4) +
1
2
(
32 +42)

= 23.5
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2. (16 points) Transitioning Back to Campus

UC Berkeley administrators are drafting up the social distancing guidelines for reintroducing engineering
students back onto campus. They know these students typically spend a lot of time in Soda Hall, Cory Hall,
and Moffitt Library and they need to determine how many students can be re-introduced without violating
any Covid-related building occupant capacities. They have an initial transition-state model acquired from
prior years, but need your help.

(a) (6 points) Prior on-campus student traffic data lead administrators to assemble the following transi-
tion diagram describing how students move between these buildings (where each arrow represents the
proportion of students moving).

Cory

Soda Moffitt

0.3

0.2

0.10.4

0.5

0.3

0.1

0.2

0.7

The current number of students in each building at time-step t is given by the state vector~x[t] defined
as:

~x[t] =

xC[t]
xS[t]
xM[t]

 =

 number of students in Cory at time t
number of students in Soda at time t

number of students in Moffitt at time t


i. Explicitly write out the transition matrix T from the provided diagram such that T ~x[t] =
~x[t +1].

ii. Does this model account for all students leaving or staying at each of these three buildings? In
other words, is the system conservative? Justify your answer.
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Solutions:

Part i.

T =

C→C S→C M→C
C→ S S→ S M→ S
C→M S→M M→M

 =

0.3 0.4 0.1
0.2 0.5 0.2
0.1 0.3 0.7


Part ii.

No, not all students have been accounted for.

In general, the total number of students will change after applying the transition matrix since the
transition matrix is not conservative. This is because not all columns of T sum to 1; the sums are 0.6,
1.2, and 1.0.
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(b) (10 points) Berkeley administrators have just modified the original transition matrix model based on
certain courses/labs remaining in remote operation, hence the new transition matrix

M =

0.6 0.0 0.0
0.2 0.4 0.6
0.2 0.6 0.4

 .
State guidelines impose limits on the typical number of students occupying each building. To predict
if the number of students in each building will meet guidelines, you decide to examine the steady-state
behavior of the transition system.

i. You are given that: λ1 = 1, λ2 =−0.2, and λ3 = 0.6.
Identify a steady state vector~xsteady such that M~xsteady =~xsteady.

ii. State guidelines impose the following limits on the number of students occupying Cory, Soda, and
Moffitt:

~xlimit =

100
60
80

 .
It is also anticipated that the following number of students will be in each building at the start of
the day ~x0 = [20,50,70]T . Argue whether or not the state guidelines ~xlimit will be satisfied in
the steady state (after an infinite number of time-steps occur).

Solutions:

Part i.
The steady state vector ~xsteady is the eigenvector corresponding to the eigenvalue of 1. To solve for
the eigenvector that satisfies M~v = 1~v we must identify the null space of (M− 1 I), since we know
(M−1 I)~v =~0.

[
M−1 I |~0

]
=

 −0.4 0.0 0.0 0
0.2 −0.6 0.6 0
0.2 0.6 −0.6 0

 R2 → R2+(1/2)R1−−−−−−−−−−−−→
R3 → −R3−(1/2)R1

 −0.4 0 0 0
0 −0.6 0.6 0
0 −0.6 0.6 0


Evidently the final two rows cancel, leaving us with an underdetermined system. We set z = α to a
free parameter and then conclude y = z = α from row 2 and that x = 0. This yields a 1-dimensional
eigenspace with a single eigenvector:

~xsteady = α

0
1
1

 for any α ∈ R.

The final steady state must be of the form~xsteady for some α ∈ R. �

Part ii.
Since the matrix T is conservative, we know that the total number of students in the steady state must
match the total number of students at time 0. The total number of students in~x0 is 20+50+70 = 140.
This must equal the total number of students in steady state: α ∗ 0+α ∗

√
2

2 +α ∗
√

2
2 = α

√
2. Thus
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α
√

2 = 140, α = 140√
2

and the steady state will be~xsteady =

 0
70
70

. The 70 students in Soda will exceed

the 60 student limit imposed by the state guidelines.
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3. (16 points) Negative Resistance Circuit

While waiting for lab checkoff you decide to fiddle with some op-amp topologies, and stumble upon the
circuit below (Figure 1) that behaves like a negative-valued resistor! In this question you will be guided
through a method for finding the equivalent resistance of the circuit. Afterwards we will investigate one
potential application of this circuit.

−

+

−
+Vin

Itest

R2

R1

+

−

Vout

R3

Figure 1: Op-amp circuit that behaves like a negative-valued resistor.
Itest is defined as the current from the voltage source Vin towards the u+ input op-amp node.

(a) (6 points)

i. Find an equation for Vout in terms of Vin, Itest, and R3.
ii. Find an equation for Vout in terms of Vin, R1, and R2.

iii. The equivalent resistance looking into the circuit will be the voltage at the node divided by the
current going into the node: Req =

Vin
Itest

. What is the equivalent resistance of this circuit? You
should use the results from parts (i) and (ii), and your answer should not contain Vout.
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Solutions:
i. Since the only element between the Vin and Vout nodes would be R3, and since Itest is already

specified, we can immediately find the relation between these using Ohm’s law V3 = ItestR3. This
yields

Vout =Vin− ItestR3. �

ii. For this part we must first acknowledge that the op-amp circuit forms a negative feedback system,
which admits use of the golden rules to say u− = u+ =Vin. Next we need to determine the current
through R1, which can be given by Ohm’s law I0 =

Vin−0
R1

. Note in our convention (numerator of
the last equation) that I0 flows towards ground.

Since another golden rule states that no current can flow in/out of op-amp input terminal, it must
be by KCL that I0 also flows through R2 ( and is bound for R1). This lets us work back Ohm’s law
on R2 to identify Vout in terms of known quantities I0 =

Vout−u−
R2

. All of these findings lead us to
the final equation

Vout =

(
1+

R2

R1

)
Vin. �

iii. For this circuit to function as expected, the equations from (i) and (ii) must be consistent with each
other. So to identify Itest we equate the expressions found in (i) and (ii) and solve for the current.
Then substitute this back in to solve for Req.

Vin− ItestR3 =
(

1+ R2
R1

)
Vin

Itest = Vin

(
− R2

R1R3

)
Req = Vin

Itest
= −R1R3

R2
. �
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(b) (4 points) In lab you are using a current source to test a load resistance, but you find that the load
current IL depends on the load resistance RL. You infer that the current source has an internal source
resistance R0 and come up with the following model (Figure 2) for your circuit.

IS R0 RL

IL

Figure 2: Model diagram for a current source with internal resistance R0.

What is IL in terms of given variables?
Your solution should be in terms of R0, RL, and IS.

Solutions:
Set the node voltage shared by the top of R0 and RL as u. We know from our current conservation law
that IS = I0+IL, where I0 passes through R0 and is bound for ground. Further we know I0R0 = ILRL = u.
The combination of these two equations yield the result IS =

u
R0

+ u
RL
→ u = IS

R0+RL
. Finally we can

work Ohm’s law back to identify IL = u
RL

to produce

IL =

(
R0

RL +R0

)
IS. �

Alternatively, one could start from the equivalent resistance REQ = R0RL
R0+RL

of Figure 2 to identify u.

(c) (6 points) You decide to use the op-amp circuit from part (a) in order to make the load current in part
(b) independent of RL. The circuit from part (a) can be modeled as a resistor with resistance Ra < 0 (a
negative value). This new circuit element Ra will be wired in parallel with the current source as shown
in Figure 3.

IS R0 RL

IL

Ra

Figure 3: Diagram for the application of the negative resistance circuit to a current source.

Choose a value for Ra such that the current through the load resistors IL is equal to the current
through the source current IS. Show that IL = IS with your chosen Ra (i.e. do not just guess a value).
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Solutions:
In an ideal scenario, the internal resistance R0 would be infinite so that all current from IS flows exclu-
sively through the load RL. With the inclusion of Ra < 0 in parallel with R0, we may just be able to
produce an effectively-infinite equivalent resistance.

The trick here is to examine the mathematical equation for the equivalent resistance of R0 and Ra.
You may notice with the specific choice of Ra =−R0 that the denominator in our Req expression goes
to zero, thus producing an effectively-infinite resistance just like we had hoped for!

Req =
R0Ra

R0 +Ra
=

R0(−R0)

R0 +(−R0)
→ ∞

With this choice of Ra implemented, the combined equivalent resistance of Ra and R0 behave likes an
open wire and we can thus redraw our circuit as:

IS RL

IL

Applying KCL to this re-drawn diagram yields IS = IL. �
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4. (18 points) Designing a light meter

Our plants keep dying from not getting enough sun! To prevent this we want to design a circuit to measure
the light the plant gets. We will start with a photodetector, which we can model as a current source Is. When
the plants are getting sufficient sun exposure, the current source outputs 5 nA = 5× 10−9A. Conversely,
when they are not getting enough sun exposure the current source outputs 0 nA.

(a) (6 points) We wire up the current source Is into the capacitor circuit shown in Figure 4 below.

Is(t) C

+

−

vout(t)

Figure 4: Light meter circuit, where the current source Is(t) models the photodetector.

Find an expression for vout(t) in terms of Is(t), C, and t when under constant light exposure
(Is(t) = 5 nA). Then identify the capacitor value C such that, after 1 hour under exposure, the
capacitor voltage is Vout = 5V . Assume the initial voltage on the capacitor is 0V.

Solutions:
The charge on a capacitor is defined through the equation C = Q

V , and so the current being applied (I =
dQ/dt) to a capacitor follows by taking the time-derivative of the capacitor equation I = dQ

dt = C dV
dt .

This can be rearranged to find V in terms of the current source and the capacitor value:

dVout

dt
=

1
C

Is(t) −→
∫ t

0

dVout(t ′)
dt ′

dt ′ =
1
C

∫ t

0
Is(t ′)dt ′ −→ Vout(t) =

1
C

∫ t

0
Is(t ′)dt ′ + Vout(0).

Since there is no initial voltage across the capacitor at t = 0, we can simplify our final solution to

Vout(t) =
1
C

∫ t

0
Is(t ′) dt ′.

Since we are looking for Vout(t) when under constant sun exposure, we can substitute the constant
value Is(t) = 5nA into the integral. This yields

Vout(t) =

(
(5×10−9 A)

C

)
t. �

To determine the capacitance C needed to meet our voltage condition, we first recognize that the
voltage expression simplifies thanks to the photodetector behaving like a constant current source

Vout(t) =

(
1
C

)
Is t −→ C =

(5×10−9 A)(60×60 s)
5 V

= 3600×10−9
(

A s
V

)
.

Thus C = 3.6µF. �
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(b) (6 points) We would like to use the previous circuit to power a separate LED device that indicates the
state of sun exposure on our plant. The device indicates sufficient sun exposure when +5V is applied
across it, and conversely indicates the plant is critically underexposed when -5V is applied across it.
Design a circuit using a comparator that outputs +5V once the plant has received at least 1 hour
of full exposure, and otherwise outputs -5V. You have a voltage source Va(t) which corresponds to
Vout(t) from part (a).

Regardless of your answer in part (a) assume Va(t) functions exactly as previously described; so
Va(t) = 5V after an hour of full exposure. You may use as many voltage sources as you would like.
Label the comparator rails and any voltage sources you include (with explicit voltage values).

Solutions:
We see from part (a) that Va(t) is directly proportional to the exposure time. Therefore Va(t) will output
5V after the sensor has been exposed for 1 hour and less than 5V otherwise. By putting a voltage of
5V in the negative terminal of the op-amp, -5V will output until 1 hour is reached.

−

+

−
+Va(t)

−
+5V

+

−

Vb(t)

5V

−5V
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(c) (6 points) We want to use the comparator output from the previous circuit to talk to a microcontroller.
However, your microcontroller can only read 0V to 5V, instead of the -5V to 5V output voltage from the
comparator in part (b). Furthermore, you do not have access to any other comparator. Design a circuit,
without using a comparator, that scales and shifts an input voltage in the range−5V ≤Vin ≤+5V
to produce an output voltage 0V ≤Vout ≤+5V . Use the voltage source Vin =Vb(t) to model the out-
put of part (b). You are limited to only use circuit elements provided with your lab, which entails 4
resistors, two op-amps, and one constant voltage source. For any resistors or voltage sources that you
use in your design, you may pick any component value, but please clearly label and specify its value.

Hint: There are multiple possible solutions to this sub-part.

Solutions:
Ultimately we would like to assemble a circuit which performs the following voltage map:

Vc(t) =
1
2

Vb(t) +
5
2

V.

One quick option is to implement a voltage summer circuit:

−
+Vb(t)

R R

−
+5V

+

−

Vc(t)

By setting the two resistors equal in value (they can be any resistance), we produce a circuit which
outputs the desired map (which follows from a quick super-position assessment)

Vc(t) =

(
1
2

)
Vb(t) +

(
1
2

)
5 V.

Notice that Vb =+5V produces Vc =
(5

2 +
5
2

)
V = +5 V , and Vb =−5V produces Vc =

(−5
2 + 5

2

)
V =

0 V , just as desired. �

Alternatively, one could implement 2 inverting amplifiers with an additional voltage source to ac-
complish this task. First you must invert the input voltage Vb(t) → −Vb(t), then you must scale and
shift the output using another inverting amplifier.
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−

+

R

u

R

+

−
Vb(t)

−

+

R

+

−

vc(t)

2R

−
++5

3V

The first stage simply inverts Vb(t) since the output at node u is

u = 0−R
(

Vb−0
R

)
=−R

R
Vb(t) =−Vb(t).

Now the output from the second stage produces

Vc(t) =

(
5
3

V
)
− R

2R

(
u− 5

3
V
)

=

(
5
3

V +
5
6

V
)

+
1
2

Vb(t) =
1
2

Vb(t) + 2.5 V.

Thus our circuit reproduces the correct mapping of the Vb(t) input voltage. �

EECS 16A, Spring 2021, Final Exam – SOLUTIONS 17



18

5. (16 points) Charge sharing check-in

(a) (8 points) Let us analyze the capacitor circuit shown below. Let us set all of the capacitors to have the
same capacitance C1 = C2 = C3 = C. Assume that all capacitors start without any initial charge, i.e.
they are completely discharged before phase A.

φB

C3

C1

φB

C2
φA

uout

φA

−
+ Vin

The switches for phase A close first and the capacitors charge up completely. Those switches are then
disconnected and the switches for phase B are closed. What is the voltage at node uout in phase B in
terms of C and Vin? Draw out the two phases of the circuit for partial credit.

Solutions:
First we draw out the circuit in phase A:

C1

C2

C3

−
+ Vin

We must find the equivalent capacitance for the capacitors in series: CEQ =C/3.

With this simplified circuit, we identify a charge of QA =+1
3CVin on each positive plates

(and conversely −CVin/3 on the negative plates).

Next, we draw the circuit in phase B:
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C1

C3uout

At the floating node uout , we see the positive plates of the capacitors C1 and C3. The charge stored on
those plates from phase A is CVin/3+CVin/3 = 2CVin/3. The charge at uout in phase B is 2Cuout .

Setting the charges equal, we find that uout =Vin/3.

(b) (8 points) In this part we will analyze a slightly different circuit, shown below. Let us again set all of
the capacitors to have the same capacitance C1 =C2 =C3 =C. Assume that all capacitors start without
any initial charge, i.e. they are completely discharged before phase A. The switches for phase A close
first and the capacitors charge up completely. Those switches are then disconnected and the switches
for phase B are closed.

φB

C3

C1

φB

C2
φA

φA

uout

φA

−
+ Vin

What is the voltage at uout in phase B in terms of C and Vin? Draw out the two phases of the circuit
for partial credit.

Solutions:
First we draw the circuit in phase A:

EECS 16A, Spring 2021, Final Exam – SOLUTIONS 19



20

C1

C2

C3

−
+ Vin

We first find the equivalent capacitance of the capacitors C2 and C3 in series on the top, which is C/2.

Thus the charge stored on the top two capacitors C2 and C3 in phase A is CVin/2, and the charge
stored on the bottom capacitor C1 is CVin.

Next we draw the circuit in phase B.

C1

C3uout

At the floating node uout , we see the positive plate of the capacitors C1 and the negative plate of C3.
The charge stored on those plates from phase A is CVin−CVin/2 =CVin/2. The charge at uout in phase
B is 2Cuout .
By setting these equal we find that uout =Vin/4.
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6. (16 points) Transatlantic Telegraph Cable

The year is 1956, and secret agents Alice & Bob have been deployed to New York and London respectively.
Alice regularly needs to send Bob sensitive information, and they just caught word of a recently established
transatlantic telegraph cable TAT-1 between the continents, which has a much faster communication speed
than mailing letters.

(a) (4 points) Alice and Bob use conventional mail to agree on a specific binary code for conveying their
secret messages. Alice found a 6-element code in one of her old training manuals, but unfortunately
one of the numbers in code is illegible:

~s[n] = [ +1 , −1 , +1 , +1 , −1 , γ ]

(where γ represents the missing entry, which will be either +1 or -1). Luckily her manual also provides
a diagram of this code’s auto-correlation function, plotted in Figure 5 below.
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s
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Auto-correlation

Figure 5: Alice’s secret code (left) has a length of 6 elements but the last entry~s[5] = γ is unknown.
The auto-correlation (right) corr~s(~s)[k] of the secret code.

Identify the missing entry γ (either +1 or −1) of the code from Alice’s manual. Provide explicit
reasoning to justify your answer.

Solutions:
Recall the definition for auto-correlation:

corr~s(~s)[k] =
+∞

∑
n=−∞

s[n] s[n− k].

Since there are only 2 possible values for γ , let’s first try γ =+1 and then compute the auto-correlation
of~s. This yields (for −5≤ k ≤ 5)

corr~s(~s)[k] = [ 1 , −2 , 3 , 0 , −3 , 6 , −3 , 0 , 3 , −2 , 1 ].
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Unfortunately this doesn’t match the given auto-correlation sequence.

Alternatively we may verify γ =−1 by computing the auto-correlation with this entry (for−5≤ k≤ 5)

corr~s(~s)[k] = [ −1 , 0 , 1 , −2 , −1 , 6 , −1 , −2 , 1 , 0 , −1 ].

This matches the given auto-correlation sequence. Therefore the missing number is γ =−1. �

Technically one doesn’t need to check the entire auto-correlation sequence. Full credit can be awarded
for computing the auto-correlation at a specific non-zero k value (k 6= 0) for γ =±1 and compare with
the corresponding value in the plot to reach the correct conclusion that the missing number is γ =−1.
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(b) (4 points) Unfortunately, enemy counter-intelligence managed to intercept Alice’s mail to Bob, so she
decides to use a new secret code (shown in Fig. 6):

~s[n] = [ 1 , −1 , 1 , −1 , −1 , −1]

0 1 2 3 4 5

−1

0

1

n
~ s[

n]

Secret code

Figure 6: Alice’s newest secret code (top).

In order to communicate through the transatlantic cable, Alice and Bob need to determine the trans-
mission delay between them. This will help Bob find the starting time stamp of Alice’s messages.
Alice starts transmitting the secret code repeatedly. She transmits the first element of each 6-element
code at time stamps n = [−12,−6,0,+6,+12]. At the receiving side, Bob sees the code but with some
delay. Bob’s best guesses of the delay are 3T , 4T , or 5T , where T denotes the time interval between
adjacent time stamps.

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

−1

0

1

n

~r[
n]

Received signal (unknown delay)

Figure 7: Bob’s received signal, shifted by some unknown delay (bottom)

Bob receives the signal ~r[n] shown in the lower Figure 7 above. Based on Bob’s guesses, what is
the actual time delay in terms of T ? Justify mathematically. You can assume that the delay is an
integer number of T (i.e. no decimals).

Solutions: Compute the cross-correlation corr~r(~s)[k] for k = 3,4,5, we get the following results:

corr~r(~s)[k = 3] = 2

corr~r(~s)[k = 4] =−2

corr~r(~s)[k = 5] = 6

A shift of k = 5 matches the secret code ~s[n] with the received signal ~r[n], therefore the actual time
delay is 5T .
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(c) (4 points) Now that Alice and Bob have determined the delay, Alice can send messages using the secret
code. Alice’s messages contain binary symbols (composed ±1 values), and she encodes her messages
by multiplying each of her message symbols with the 6-element secret code. So if she sends a message
with 18 elements, it must contain 18/6 = 3 symbols of information. For this part assume there is no
time delay between transmission and reception.
Alice sends a 18-element-long signal to Bob. However, some noise corrupts the signal, so the sig-
nal Bob receives~r[n] contains imperfect samples instead of +1 and -1. He decides to take the cross
correlation with the secret code to try to decode the message.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
−6

−3

0

3

6

k
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rr ~

r(
~ s)
[k
]

Cross correlation with the received signal

Figure 8: Cross correlation of the secret code with Bob’s received signal, containing 3 symbols of
information. k < 0 and k > 17 are ignored.

The cross correlation with the secret code for shifts k = 0 through k = 17 is:

corr~r(~s)[k] = [5.3,0.6,1.8,0.2,−1.8,−0.2,−5.4,−0.6,−1.8,−0.2,1.8,0.2,5.4,−0.4,1.6,−0.8,0,−1]

Based on the cross-correlation with the received waveform, extract the message sent to Bob.
Justify your answer.

Solutions:

Recall the definition for cross-correlation

corr~r(~s)[k] =
+∞

∑
n=−∞

r[n] s[n− k].

We know that each 6 transmitted elements corresponds to one message symbol. Since we assume no
delay, we can look at the cross correlation with shifts k = 0,6,12.

corr~r(~s)[k = 0] = +5.3
corr~r(~s)[k = 6] = −5.4

corr~r(~s)[k = 12] = +5.4
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The first 6 elements have a positive correlation with the secret code, so the first symbol is +1. The
second 6 elements have a negative correlation, meaning they are more similar to the secret code mul-
tiplied by -1. This means the second symbol is -1. Finally, the third symbol is +1 for a similar reason
as the first symbol.
Therefore, Alice’s message is [ +1 , −1 , +1 ]. �
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(d) (4 points) Enemy forces have cut the cable to prevent Alice & Bob from communicating. Alice can
go underwater to fix the break, but she must first identify the break location in the Atlantic ocean. She
expects the broken point to echo her signal back along the cable, i.e. if she transmits her signal, it will
reflect at the break and she will receive the signal back after some delay. She decides to transmit her
6-bit code

~s[n] = [ 1 , −1 , 1 , −1 , −1 , −1 ]

and monitor the signal~r[n] that echoes back. She computes the cross-correlation of the echo with the
secret code, i.e. corr~r(~s)[k], shown in Figure 9.
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Figure 9: 6-bit secret code (left).
Cross-correlation (right) corr~r(~s)[k] of the echo with the secret code.

Assume the time interval between adjacent time stamps is T = 1 ms = 10−3 s, and that the signal travels
in the telegraph cable at a speed of v = 2×108 m/s (the speed of light is c≈ 3×108 m/s in a vacuum,
but in the cable medium it is v = 2

3 c ). How far is the broken point from Alice’s location?

HINT: Remember to account for the fact that the received signal has taken a full round trip, which
is double the distance from Alice to the break.

Solutions:
The peak of the cross-correlation occurs at k = 4, so we know the time delay between the transmitted
signal and the echo is 4T = 4 ms. Note that the signal travels from Alice’s location to the broken point
then back to Alice’s location, and the round-trip time delay is 2× the single-trip time delay. Therefore,
the distance from Alice’s location to the broken point is

1
2
(4 ms×2×108 m/s) = 4×105 m = 400 km.
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7. (16 points) Cool Predictions

You have just been contracted by PG&E to predict daily energy use by the UC Berkeley campus based on
local weather conditions. They have provided data of last year’s daily energy usage along with corresponding
weather reports.

(a) (5 points) You hypothesize a linear model based on the phase of the moon (represented as an integer
between 0 and 8) and the season (represented as an integer between 0 and 3).

E = αP xP + αS xS (4)

where E is the daily energy usage (in kilowatt-hours), xP represents the moon phase, and xS corre-
sponds to the seasons. To get an initial approximation for the model parameters αP and αS, you
sample data from 3 days to set up a linear system; the data have been printed in Table 1 below.

xP xS E
1 0 4
0 2 2
1 1 5

Table 1: Campus daily energy-usage
(xP is the moon phase, xS is the season, and E is the energy usage)

Explicitly set up the linear system of equations D~a = ~E, then from this system compute the least-

squares solutions for ~̂a =

[
αP

αS

]
.

Solutions:
We must first write out the data into a linear system:

D~a = ~E →

1 0
0 2
1 1

[αP

αS

]
=

4
2
5


Unfortunately the columns of D are not orthogonal, so there is no short-cut to determining the least
squares solution. Next we employ the least squares formula to identify ~̂a = (DT D)−1DT~E.

~̂a =

[1 0 1
0 2 1

]1 0
0 2
1 1

−1[
1 0 1
0 2 1

]4
2
5


=

([
2 1
1 5

])−1[9
9

]
=

1
9

[
5 −1
−1 2

][
9
9

]

~̂a =

[
4
1

]
�
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(b) (4 points) After speaking with the on-campus facility experts, you realize that a majority of energy is
actually used for heating/air conditioning for indoor facilities (affected by outdoor temperature) and
the outdoor pools (affected by wind conditions). This guides you to a new prediction model

E = αT (xT −15)2 +αW xW +αR (5)

where E is daily energy usage (in kilowatt-hours), xT corresponds to temperature (in Celsius), xW

corresponds to wind speed (in meters per second), and αR accounts for all non-heating-related energy
usage. Now you would like to use data from last year’s logs to identify the least-squares solution for

the parameters of this new model~a =

αT

αW

αR

.

xT (◦C) xW (m/s) E (kWh)
25 4 300
20 5 220
10 1 250
15 5 280
12 9 350

Table 2: Selected energy/weather data logs.
(xT is the temperature, xW is the wind speeds, and E is the energy usage.)

Provided the data in Table 2 above, explicitly set up the linear system D~a = ~E needed to solve
for the least-squares solution of the parameter vector ~a. This means you must write out all of the
matrix D and vector ~E elements for full credit.

Note: you are not asked to actually find the least-squares solutions for this part!

Solutions:
The transcription process is quite similar to the previous sub-part, but now we must be wary of the
coefficients near α (which is (xT −15)2) and γ (all constant 1).

D~a = ~E −→


100 4 1
25 5 1
25 1 1
0 5 1
9 9 1


αT

αW

αR

 =


300
220
250
280
350

 . �
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(c) (3 points) Now that you spent some time playing around with different prediction models, you have
finally developed a surprisingly simple model (with only 3 parameters) that accurately fits last year’s
the energy and weather data.

Your next task is to test the model against this year’s weather and energy data. Unfortunately the
latest data (matrix D below) keeps causing your code to crash! Checking the data, you try tweaking a
single entry (denoted by η) in D and re-running. Lo and behold... it works!

D =


30 25 5
25 21 4
10 6 4
10 η 5
20 15 5


The original error message said "Math error: Solution cannot be computed." Explain what is likely
causing this error. Then use this reasoning to identify the original value of the data entry η that
causes the code to crash.

Solutions: In order to use the least squares formula, the DT D matrix must be invertible. This
requires the D to have linearly independent columns. We can observe that the entries in the third
column (excluding the 4th row) are equal to column 1 - column 2. So if η = 5, then the columns are
linearly dependent, which would cause error. So η = 5 was our original value that caused the code to
crash.

(d) (4 points) As a final test, you apply all 3 of your developed models (from question parts a, b, c) to
predict daily energy usage over the last 3 days from the most recent weather data. These models
generate the following daily energy usage estimates ~̂Ea, ~̂Eb, and ~̂Ec, shown below along with the actual
energy values ~E.

~E =

 1
3

0.5

 ~̂Ea =

1
1
1

 ~̂Eb =

 0
2

1.5

 ~̂Ec =

2
2
1


Compute the squared error for each of the models. Based on that, which model best agrees with
the actual daily usage data?

Solutions:
In order to identify the model that produced the best estimation, we must compute the squared error
for each model.

ea = ‖~E− ~̂Ea‖2 = (1−1)2 +(3−1)2 +(0.5−1)2 = 0+4+0.25 = 4.25

eb = ‖~E− ~̂Eb‖2 = (1−0)2 +(3−2)2 +(0.5−1.5)2 = 1+1+1 = 3

ec = ‖~E− ~̂Ec‖2 = (1−2)2 +(3−2)2 +(0.5−1)2 = 1+1+0.25 = 2.25
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Model c has the lowest squared error (ec < eb < ea), therefore our final model c most accurately
predicts future energy usage based on weather patterns. �
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8. (16 points) Symmetric and PSD Matrices

The eigenvectors corresponding to distinct eigenvalues of a general matrix A are linearly independent, and
the eigenvalues of said matrix can be any real (or even complex!) numbers. In this question we consider
two special classes of matrices (used ubiquitously in machine learning) and prove some essential properties
about their eigenvalues/vectors.

(a) (8 points) A symmetric matrix A ∈Rn×n is a square matrix such that A = AT . Let~u and~v be eigenvec-
tors of symmetric matrix A with distinct eigenvalues λ and µ respectively. Show that the eigenvectors
~u and~v are orthogonal.

Hint: Consider the expression~vT A~u.

Solutions: By definition, A~u = λ~u and A~v = µ~v.
Following the hint, we see that~vT A~u =~vT (λ~u) = λ~vT~u.
Using the fact that A is symmetric, it also follows that~vT A~u =~vT AT~u = (A~v)T~u = (µ~v)T~u = µ~vT~u.
Hence, λ~vT~u = µ~vT~u.
Since we assume that λ 6= µ , this implies that~vT~u = 0, as desired.

The above result implies that if a symmetric matrix has all distinct eigenvalues, its eigenvectors form
an orthogonal basis for Rn. In fact, this result can still hold for the case of non-distinct eigenvalues.
This is true because two equal eigenvalues (for example) correspond to a single 2D eigenspace, which
you can choose to be spanned by orthogonal vectors!

(b) (8 points) A symmetric matrix A ∈Rn×n is called positive semi-definite if ~xT A~x ≥ 0 for any~x ∈Rn.
Assume that the eigenvalues of any symmetric matrix A are real. Show that a symmetric positive
semi-definite matrix A has all non-negative eigenvalues (i.e, λ ≥ 0).

Hint: Apply definitions of eigenvectors, eigenvalues, and positive semi-definiteness. You will NOT
need to use the fact that A is symmetric; this just ensures that the eigenvalues of A are real, which you
do not need to prove.

Solutions: Let~v be an eigenvector of A with eigenvalue λ .
Then, A~v = λ~v.
Since A is positive semi-definite,~vT A~v≥ 0.
Also,~vT A~v =~vT (λ~v) = λ~vT~v = λ ||~v||2.
Therefore, λ ||~v||2 ≥ 0.
Also, ||~v|| ≥ 0 since norms are non-negative.
This implies that λ ≥ 0, as required.
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