EECS 16A Designing Information Devices and Systems I Fall 2022 Discussion 3A

1. Matrix Multiplication

Consider the following matrices:

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$$
$$\mathbf{E} = \begin{bmatrix} 1 & 9 & 5 & 7 \\ 4 & 3 & 2 & 2 \end{bmatrix} \qquad \mathbf{F} = \begin{bmatrix} 5 & 5 & 8 \\ 6 & 1 & 2 \\ 4 & 1 & 7 \\ 3 & 2 & 2 \end{bmatrix} \qquad \mathbf{G} = \begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} 5 & 3 & 4 \\ 1 & 8 & 2 \\ 2 & 3 & 5 \end{bmatrix}$$

For each matrix multiplication problem, *if the product exists*, find the product by hand. Otherwise, explain why the product does not exist.

(a) **A B**

(b) $\mathbf{C} \mathbf{D}$

1

(c) **DC**

(d) **C E**

(e) **F E** (only note whether or not the product exists and optionally compute the product if it does)

(f) **E F** (only note whether or not the product exists and optionally compute the product if it does)

(g) **G H** (Practice on your own)

(h) **H G** (Practice on your own)

Last Updated: 2022-09-09 23:11

2. Visualizing Span

We are given a point \vec{c} that we want to get to, but we can only move in two directions: \vec{a} and \vec{b} . We know that to get to \vec{c} , we can travel along \vec{a} for some amount α , then change direction and travel along \vec{b} for some amount β . We want to find these two scalars α and β , such that we reach point \vec{c} . That is, $\alpha \vec{a} + \beta \vec{b} = \vec{c}$.

(a) First, consider the case where $\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\vec{y} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, and $\vec{z} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$. Draw these vectors on a sheet of paper.

(b) We want to find the two scalars α and β , such that by moving α along \vec{x} and β along \vec{y} , we can reach \vec{z} . Write a system of equations to find α and β in matrix form.

5

(c) Solve for α , β .

3. Span Basics

(a) What is span
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$$
?

(b) Is
$$\begin{bmatrix} 5\\5\\0 \end{bmatrix}$$
 in span $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$?

(c) What is a possible choice for \vec{v} that would make span $\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \vec{v} \right\} = \mathbb{R}^3$?

(d) For what values of b_1 , b_2 , b_3 is the following system of linear equations consistent? ("Consistent" means there is at least one solution.)

1	2		$\begin{bmatrix} b_1 \end{bmatrix}$
2	1	$\vec{x} =$	b_2
0	0		b_3