1. Mechanical Determinants

(a) Compute the determinant of \[
\begin{bmatrix}
2 & 0 \\
0 & 3
\end{bmatrix}
\].

(b) Compute the determinant of \[
\begin{bmatrix}
2 & -3 & 1 \\
2 & 0 & -1 \\
1 & 4 & 5
\end{bmatrix}
\].
2. Mechanical Eigenvalues and Eigenvectors

In each part, find the eigenvalues of the matrix M and their associated eigenvectors.

(a) $M = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}$

Do you observe anything about the eigenvalues and eigenvectors?

(b) $M = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$
3. Eigenvalues and Special Matrices – Visualization

An eigenvector \vec{v} belonging to a square matrix A is a nonzero vector that satisfies

$$A\vec{v} = \lambda \vec{v}$$

where λ is a scalar known as the eigenvalue corresponding to eigenvector \vec{v}. Rather than mechanically compute the eigenvalues and eigenvectors, answer each part here by reasoning about the matrix at hand.

(a) Does the identity matrix in \mathbb{R}^n have any eigenvalues $\lambda \in \mathbb{R}$? What are the corresponding eigenvectors?

(b) Does a diagonal matrix

$$
\begin{bmatrix}
d_1 & 0 & 0 & \cdots & 0 \\
0 & d_2 & 0 & \cdots & 0 \\
0 & 0 & d_3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & d_n
\end{bmatrix}
$$

in \mathbb{R}^n have any eigenvalues $\lambda \in \mathbb{R}$? What are the corresponding eigenvectors?
(c) Conceptually, does a rotation matrix in \mathbb{R}^2 by angle θ have any eigenvalues $\lambda \in \mathbb{R}$? For which angles is this the case?

(d) (PRACTICE) Now let us mechanically compute the eigenvalues of the rotation matrix in \mathbb{R}^2. Does it agree with our findings above? As a refresher, the rotation matrix R has the following form:

$$R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
(e) Does the reflection matrix T across the x-axis in $\mathbb{R}^{2 \times 2}$ have any eigenvalues $\lambda \in \mathbb{R}$?

$$T = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

(f) If a matrix M has an eigenvalue $\lambda = 0$, what does this say about its null space? What does this say about the solutions of the system of linear equations $M\vec{x} = \vec{b}$?
(g) (Practice) Does the matrix \[
\begin{bmatrix}
1 & 1 \\
0 & 0
\end{bmatrix}
\] have any eigenvalues \(\lambda \in \mathbb{R} \)? What are the corresponding eigenvectors?