1. Matrix Multiplication Proof

(a) Given that matrix A is square and has linearly independent columns, which of the following are true?

 i. A is full rank
 ii. A has a trivial nullspace
 iii. $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution for all \mathbf{b}
 iv. A is invertible
 v. The determinant of A is non-zero
(b) Let two square matrices $M_1, M_2 \in \mathbb{R}^{2 \times 2}$ each have linearly independent columns. Prove that $G = M_1M_2$ also has linearly independent columns.

2. The Romulan Ruse

While scanning parts of the galaxy for alien civilization, the starship USS Enterprise NC-1701D encounters a Romulan starship that is known for advanced cloaking devices.

(a) The Romulan illusion technology causes a point (x_0, y_0) to transform or map to (u_0, v_0). Similarly, (x_1, y_1) is mapped to (u_1, v_1). Figure 1 and Table 1 show these points.
Find a transformation matrix A_0 such that

$$
\begin{bmatrix}
u_0 \\ v_0
\end{bmatrix} = A_0 \begin{bmatrix}u_0 \\ v_0
\end{bmatrix}, \text{ and } \begin{bmatrix}u_1 \\ v_1
\end{bmatrix} = A_0 \begin{bmatrix}x_1 \\ y_1
\end{bmatrix}.
$$

Table 1: Original and Mapped Points

<table>
<thead>
<tr>
<th>Original Point</th>
<th>Mapped Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x_0, y_0) = (500, 500)$</td>
<td>$(u_0, v_0) = (500, 1500)$</td>
</tr>
<tr>
<td>$(x_1, y_1) = (1000, 500)$</td>
<td>$(u_1, v_1) = (1000, 1500)$</td>
</tr>
</tbody>
</table>
(b) In this scenario, every point on the Romulan ship \((x_m, y_m)\) is mapped to \((u_m, v_m)\), such that vector \[
\begin{bmatrix}
x_m \\
y_m
\end{bmatrix}
\]
is rotated counterclockwise by 30° and then scaled by 2 in the x- and y-directions. This transformation is shown in Figure 2.

![Figure 2: Figure for part (b)](image)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\sin \theta)</th>
<th>(\cos \theta)</th>
<th>(\tan \theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>30°</td>
<td>(\frac{1}{2})</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{1}{\sqrt{3}})</td>
</tr>
<tr>
<td>45°</td>
<td>(\frac{1}{\sqrt{2}})</td>
<td>(\frac{1}{\sqrt{2}})</td>
<td>1</td>
</tr>
<tr>
<td>60°</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\sqrt{3})</td>
</tr>
<tr>
<td>90°</td>
<td>1</td>
<td>0</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>

Table 2: Trigonometric Table

Find a transformation matrix \(R\) such that
\[
\begin{bmatrix}
u_m \\
v_m
\end{bmatrix} = R \begin{bmatrix}x_m \\
y_m
\end{bmatrix}.
\]
The Romulan ship has launched a probe into space and the Enterprise is trying to destroy the probe by firing a photon torpedo along a straight line from point \((0, 0)\) towards the probe.

(c) The Romulan generals found a clever way to hide the probe by transforming (mapping) its position with a *cloaking* (transformation) matrix \(A_p\):

\[
A_p = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}.
\]

They positioned the probe at \((x_p, y_p)\) so that it maps to \((u_p, v_p) = (0, 0)\), where

\[
\begin{bmatrix} u_p \\ v_p \end{bmatrix} = A_p \begin{bmatrix} x_p \\ y_p \end{bmatrix}.
\]

This scenario is shown in Figure 3. The initial position of the torpedo is \((0, 0)\) and the torpedo cannot be fired on its initial position! Impressive trick indeed!

Find the possible positions of the probe \((x_p, y_p)\) **so that** \((u_p, v_p) = (0, 0)\).
(d) It turns out the Romulan engineers were not as smart as the Enterprise engineers. Their calculations
did not work out and they positioned the probe at \((x_q, y_q)\) such that the *cloaking* (transformation) ma-
trix, \(A_p\), mapped it to \((u_q, v_q)\), where

\[
\begin{bmatrix}
u_q \\ v_q
\end{bmatrix} = A_p \begin{bmatrix} x_q \\ y_q
\end{bmatrix}, \text{ and } A_p = \begin{bmatrix} 1 & 3 \\ 2 & 6
\end{bmatrix}.
\]

As a result, the torpedo, while traveling straight from
\((0,0)\) to \((u_q, v_q)\), hit the probe at \((x_q, y_q)\) on the way!
The scenario is shown in Figure 4. For the torpedo to
hit the probe, we must have

\[
\begin{bmatrix} u_q \\ v_q
\end{bmatrix} = \lambda \begin{bmatrix} x_q \\ y_q
\end{bmatrix}, \text{ where } \lambda
\]
is a real number.

**Find the possible positions of the probe \((x_q, y_q)\) so that \((u_q, v_q) = (\lambda x_q, \lambda y_q)\). Remember that the
torpedo cannot be fired on \((0,0)\). This means that \((u_q, v_q) = (\lambda x_q, \lambda y_q)\) cannot be \((0,0)\).**

![Figure 4: Figure for part (d)](image-url)