EECS 16A Designing Information Devices and Systems I

Mid Semester Survey

Please fill out the mid semester survey: https://tinyurl.com/midsemester16a
We highly appreciate your feedback!

1. Voltage Booster

We have made extensive use of resistive voltage dividers to reduce voltage. What about a circuit that boosts voltage to a value greater than the supply $V_{S}=5 \mathrm{~V}$? We can do this with capacitors!

(a) In the circuit above switches ϕ_{1} are initially closed and switch ϕ_{2} is initially open. Calculate the value of the output voltage, $V_{\text {out }}$ with respect to ground, and the amount of charge stored on capacitor, C, at that state (phase 1).
(b) Now, after the capacitors are charged, switches ϕ_{1} are opened and switch ϕ_{2} is closed. Calculate the new voltage output voltage, $V_{\text {out }}$, at steady state (phase 2).

2. Charge Sharing

Consider the following circuit:

In the first phase, all of the switches labeled ϕ_{1} will be closed and all switches labeled ϕ_{2} will be open. In the second phase, all switches labeled ϕ_{1} are opened and all switches labeled ϕ_{2} are closed.
(a) Draw the polarity of the voltage (using + and - signs) across the two capacitors C_{1} and C_{2}. It doesn't matter which terminal you label + or - ; just remember to keep these consistent through phase 1 and 2! Also, label the charge on at each plate: $+Q_{C_{1}},-Q_{C_{1}},+Q_{C_{2}}$, and $-Q_{C_{2}}$.
(b) Draw the circuit in the first phase and in the second phase. Keep your polarity from part (a) in mind.
(c) Find the voltages and charges on C_{1} and C_{2} in phase 1 . Be sure to keep the polarities of the voltages the same!
(d) Now, in the second phase, find the voltage V_{x}.
(e) Practice Problem: If the capacitor C_{2} did not exist (i.e. had a capacitance of 0 F), what would the voltage V_{x} be?

