EECS 16A Designing Information Devices and Systems I

1. Modular Circuit Buffer

Let's try designing circuits that perform a set of mathematical operations using op-amps. While voltage dividers on their own cannot be combined without altering their behavior, op-amps can preserve their behavior when combined and thus are a perfect tool for modular circuit design. We would like to implement the block diagram shown below:

In other words, create a circuit with two outputs V_{x} and V_{y}, where $V_{x}=\frac{1}{2} V_{\text {in }}$ and $V_{y}=\frac{1}{3} V_{x}=\frac{1}{6} V_{\text {in }}$.
(a) Draw two voltage dividers, one for each operation (the $1 / 2$ and $1 / 3$ scalings). What relationships hold for the resistor values for the $1 / 2$ divider, and for the resistor values for the $1 / 3$ divider?
(b) If you combine the voltage dividers, made in part (a), as shown by the block diagram (output of the $1 / 2$ voltage divider becomes the source for the $1 / 3$ voltage divider circuit), do they behave as we hope (meaning $V_{\text {in }}=2 V_{x}=6 V_{y}$)?

(c) Perhaps we could use an op-amp (in negative-feedback) to achieve our desired behavior. Modify the implementation you tried in part (b) using a negative feedback op-amp in order to achieve the desired V_{x}, V_{y} relations $V_{x}=\frac{V_{\text {in }}}{2}$ and $V_{y}=\frac{V_{x}}{3}=\frac{V_{\text {in }}}{6}$.
HINT: Place the op-amp in between the dividers such that the V_{x} node is an input into the op-amp, while the source of the 2nd divider is the output of the op-amp!

2. Multiple Inputs To One Op-Amp

(a) First, let's focus on the left part of the circuit containing the voltage sources $v_{s 1}$ and $v_{s 2}$, and resistances R_{1} and R_{2}. Solve for u_{+}in the circuit above. (Hint: Use superposition.)
(b) How would you choose R_{1} and R_{2} that produces a voltage $u_{+}=\frac{1}{2} V_{s 1}+\frac{1}{2} V_{s 2}$? Could you also achieve $u_{+}=\frac{1}{3} V_{s 1}+\frac{2}{3} V_{s 2}$
(c) Now, for the whole circuit, find an expression for v_{o}.
(d) How could you use this circuit to find the sum of different signals, i.e. $V_{s 1}+V_{s 2}$? What about taking the sum and multiplying by 2 , i.e. $2\left(V_{s 1}+V_{s 2}\right)$?

3. (Optional) Designing current divider

(a) You have two current sources I_{1} and I_{2}. You also have a load resistor $R_{L}=6 \mathrm{k} \Omega$. You can use whatever resistors you want (as long as they are finite integer multiples of $1 \mathrm{k} \Omega$). How would you design a circuit such that the current running through R_{L} is $I_{L}=\frac{2}{5}\left(I_{1}+I_{2}\right)$?

