EECS 16A Designing Information Devices and Systems I

Fall 2022

1. Superposition

Consider the following circuit:

(a) With the current source turned on and the voltage source turned off, find the current $I_{R_{3}}$.
(b) With the voltage source turned on and the current source turned off, find the voltage drop $V_{R_{3}}$ across R_{3}.
(c) Find the power dissipated by R_{3}.

2. Thévenin/Norton Equivalence

(a) Find the Thévenin resistance $R_{t h}$ of the circuit shown below, with respect to its terminals A and B.

(b) Now, a load resistor, $R_{L}=R$, is connected across terminals A and B, as shown in the circuit below. Find the power dissipated in the load resistor in terms of the given variables.

(c) We modify the circuit as shown below, where g is a known constant:

Find a symbolic expression for $V_{\text {out }}$ as a function of V_{s}.
Hint: Redraw the left part of the circuit using its Thévenin equivalent.

3. A Versatile Opamp Circuit

For each subpart, determine the voltage at O, given that v_{1} and v_{2} are voltage sources.
(a) Configuration 1:

(b) Configuration 2:

(c) Configuration 3:

4. Capacitive Charge Sharing (from Spring 2020 Midterm 2)

Consider the circuit below with $C_{1}=C_{2}=1 \mu \mathrm{~F}$ and three switches ϕ_{1}, ϕ_{2}. Suppose that initially the switches
ϕ_{1} are closed and ϕ_{2} is open, such that C_{1} and C_{2} are charged through the corresponding voltage sources $V_{s 1}=1 \mathrm{~V}$ and $V_{s 2}=2 \mathrm{~V}$.

(a) How much charge is on C_{1} and C_{2} ?
(b) Now suppose that some time later, switch ϕ_{1} opens and switch ϕ_{2} closes. What is the value of the voltage u_{1} at steady state?

