EECS 16A Designing Information Devices and Systems I

1. Inner Product Properties

For this question, we will verify our definition of the Euclidean inner product in Cartesian coordinates

$$
\langle\vec{x}, \vec{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}, \quad \text { for any } \vec{x}, \vec{y} \in \mathbb{R}^{n}
$$

indeed satisfies the key properties required for all inner products for the 2 -dimensional case. Suppose $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^{2}$ for the following parts:
(a) Show symmetry: $\langle\vec{x}, \vec{y}\rangle=\langle\vec{y}, \vec{x}\rangle$.
(b) Show linearity: $\langle\vec{x}, c \vec{y}+d \vec{z}\rangle=c\langle\vec{x}, \vec{y}\rangle+d\langle\vec{x}, \vec{z}\rangle$, where $c, d \in \mathbb{R}$ are real numbers.
(c) Show non-negativity: $\langle\vec{x}, \vec{x}\rangle \geq 0$, with equality if and only if $\vec{x}=\overrightarrow{0}$.

2. Geometric Interpretation of the Inner Product

In this problem, we explore the geometric interpretation of the Euclidean inner product, restricting ourselves to vectors in \mathbb{R}^{2}.

Remember that the formula for the inner product of two vectors can be expressed in terms of their magnitudes and the angle between them as follows:

$$
\langle\vec{x}, \vec{y}\rangle=\|\vec{x}\|\|\vec{y}\| \cdot \cos \theta
$$

The figure below may be helpful in illustrating this property:

$$
\|\vec{x}\|=1, \quad\|\vec{y}\|=1
$$

For each subpart, give an example of any two (nonzero) vectors $\vec{x}, \vec{y} \in \mathbb{R}^{2}$ that satisfy the stated condition and compute their inner product.
(a) Give an example of a pair of parallel vectors (vectors that point in the same direction and have an angle of 0 degrees between them).
(b) Give an example of a pair of anti-parallel vectors (vectors that point in opposite directions).
(c) Give an example of a pair of perpendicular vectors (vectors that have an angle of 90 degrees between them).

3. Correlation

(a) You are given the following two signals:

Sketch the linear cross-correlation of signal 1 with signal 2. That is, find: $\operatorname{corr}\left(\vec{s}_{1}, \vec{s}_{2}\right)[n]$ for $n=$ $0,1, \ldots, 4$. Do not assume the signals are periodic.
(b) Now, the pattern in \vec{s}_{1} is repeated three times:

Sketch the linear cross-correlation of signal 1 with signal 2 , $\operatorname{corr}\left(\vec{s}_{1}, \vec{s}_{2}\right)[n]$, for $n=0,1, . ., 4$.

