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EECS 16A Designing Information Devices and Systems I
Fall 2022 Pre-Lab Reading 3

1 Imaging 2 Review
Last week, you built your first pixel scanning camera! We used pixel-by-pixel scanning to get a scan of a picture in a
cardboard box. The ‘golden equation’ which represented our system from Imaging 2 was s⃗ = H⃗i:

If you recollect, we got our unknown image vector i⃗ from our mask matrix H and the sensor reading s⃗ by multiplying
by H−1 on both sides of the ‘golden equation’ to get: i⃗ = H−1⃗s. To be able to do this, we need our mask matrix to
always have the following properties:

(a) Invertible

(b) Linearly independent columns

(c) Trivial nullspace

For square matrices (as we’re dealing with), these properties all actually imply each other.

2 Imaging 3 Overview
In Imaging 2, we defined what a "good measurement" is. If we want to always reconstruct our image, we need an
invertible mask matrix, H. However, is invertibility the only condition for a "good measurement"? Are all invertible
matrices good for imaging? What happens if you shake your projector in the middle of a scan? What if we consider
scanning multiple pixels at a time instead of just one? These are some questions we will look to answer in Imaging 3!
We will use the same matrix/vector representation for H ,⃗ i and s⃗ as Imaging 2. In Imaging 3, we will look into multi-
pixel scanning. Here are some examples of simple 2x2 mask matrices that are used for multi-pixel scans:

As you can tell from the image, we now have multiple 1’s in each row of the mask matrix H, which means we are
scanning multiple pixels at a time. Instead of each measurement (scan) corresponding to one pixel, measurements are
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now linear combinations of pixels. Note that our system is still the same. We still have our ‘golden equation’, s⃗ = H⃗i,
and we still need H to be invertible. To motivate multipixel scanning, we first need to understand noise better.

Noise is any unwanted, random variation in our measurement; for example, additional room light getting into our
projector boxes to further brighten the image is noise. If there is too much noise in the system, it makes it very hard to
distinguish between the actual signal and the noise. We ideally want high signal and low noise in our measurements.
A measure of a system’s perturbation by noise is the signal-to-noise ratio (SNR). A high SNR is extremely desirable
in any physical system.

How does noise affect our model?

The only difference is we now have an added noise vector, w⃗. Our new ‘golden equation’ now becomes s⃗ = H⃗i+ w⃗.

How does multi-pixel imaging relate to noise? When we scan multiple pixels at a time by illuminating them, it
makes the box much brighter when compared to the light in the box from the illumination of a single pixel. We can
leverage multi-pixel image by taking the average of all our scans. Signal averaging is a very common technique used
to increase the SNR. Here’s a simple example to illustrate why: Let’s say you are scanning a small 4x4 image. During
some of your scans, a Stanford student thinks it would be very funny to shine a super bright torchlight into your box.
In the single-pixel imaging model, you only scan each pixel once. This means that you only have bad, unusable data
for the scans that were disturbed. In the multi-pixel imaging model, you scan each pixel multiple times. Thus, even if
some of the scans are bad, averaging across all the scans for every pixel will give us a better final result that just using
a singular bad measurement (single-pixel model). Note that averaging is not going to completely solve the problem.
It will, however, improve our results.

2.1 Eigenvalues
Eigenvalues??!! What do eigenvalues have to do with Imaging you may ask. Just like in Imaging 1, if you multiply
by H−1 on both sides of the (new) golden equation, you get i⃗est = H−1⃗s = i⃗+H−1w⃗. Don’t worry if this doesn’t make
sense right now. We will leave the derivations for lab, so just assume that this is correct for now. You now have an
H−1w⃗ term that you can leverage to control the affect of noise (since H is something that you defined). Remember
that you want high SNR which means low noise. Do you think that means you would want an H with a large or small
multiplicative effect? The "multiplicative effect" of a matrix can be defined by its eigenvalues.

Eigenvalue Theory: If H is an N ×N matrix that you know is linearly independent (invertible), it has N linearly
independent eigenvectors as Hvi = λivi for i = 1...N, where λi is the ith eigenvalue for the ith eigenvector. As you
would have seen on the HW, if λ is an eigenvalue of H, 1

λ
is the eigenvalue for H−1! This should give you a hint

regarding how we can leverage eigenvalues to reduce the effect of the noise term.

You may now be inclined to think that multi-pixel imaging is miles ahead of single-pixel imaging. However, for
reasons that you will find out in lab, multi-pixel may not always be better than single-pixel imaging. Please don’t for-
get to bring your lab kits as you complete your journey through the Imaging module and become expert photographers,
one (or many) pixel(s) at a time!
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