

Welcome to EECS 16A!

Designing Information Devices and Systems I

Ana Claudia Arias and Miki Lustig

Module 2
Lecture 12
Design Procedure and Examples (Note 20)

Today

Design Procedure

Step 1 (Specification): Concretely restate the goals for the design.

Frequently, a design prompt will include a lot of text, so we'd like to restate all of the most important features of our design. We'll refer to these specifications later to determine if our design is complete.

Step 2 (**Strategy**): Describe your strategy (often in the form of a block diagram) to achieve your goal. To do this, start by thinking about what you can measure vs. what you want to know.

Step 3 (Implementation): Implement the components described in your strategy. This is where pattern matching is useful: remind yourself of blocks you know, (ex. voltage divider, inverting amplifier) and check if any of these can be used to implement steps of your strategy.

Design Procedure

Step 1 (Specification): Concretely restate the goals for the design.

Frequently, a design prompt will include a lot of text, so we'd like to restate all of the most important features of our design. We'll refer to these specifications later to determine if our design is complete.

Step 2 (Strategy): Describe your strategy (often in the form of a block diagram) to achieve your goal. To do this, start by thinking about what you can measure vs. what you want to know.

Touch/no touch

Convert touch to capacitance

Convert capacitance to voltage

Step 3 (Implementation): Implement the components described in your strategy. This is where pattern matching is useful: remind yourself of blocks you know, (ex. voltage divider, inverting amplifier) and check if any of these can be used to implement steps of your strategy.

Step 4 (Verification): Check that your design from Step 3 does what you specified in Step 1.

Check block-to-block connections, as these are the most common point for problems.

Does one block load another block causing it to behave differently than expected?

Are there any contradictions (ex. a voltage source with both ends connected by a wire, or a current source directed into an open circuit)?

Cascading Blocks

We want blocks f() and g() to keep their functionality. Umidh = Vthy Before connection

After Connection

Umidh = Rthg . Vths + Rths . Vthg

Rthg + Rths Rthf + Rthg

IS Rths = 0 or Rthg > 00 is o.c.

Ideal isolation;

From perspective of block f: See an open circuit;

Ring = O.C.

From perspective of block g: See a Voltage Source

Ring = O.

Unity Gain Buffer

LAllows us to isolate

Design

loading

$$U^+ = V_{in}$$

GRZ U+ = U-

Vin = VouT

I+ = 0 => U+ = VDAC JU= +U Vout = Uspeaker = U-VDAC = Vspeaker

Example 1 Want this:

Implement:

 $U_{midh} = \frac{R_2}{R_1 + R_2}. Vin V$ $V_{midh} = V_{midR} \Rightarrow V_{midR} \Rightarrow V_{midR}$

Example 2 Want this: $V_{in} \rightarrow Sensor \rightarrow V_{mid} \rightarrow Sensor \rightarrow V_{out} = V_{in} \left(-\frac{R_s}{R_s}\right)$ $I = \frac{V + h_s}{R_{th} + R} \rightarrow V_{out} \rightarrow V$

Before connection When connected:

Unide = R+Rths. Whis # Uths

Solution: ?
Buffer 1

Rf = 3R Rins Umid L $R_5 = R$ Vahs UmdR 0 Vths = Umid L Lo Umidh = Umid R

Example 3

Your boss comes to you as asks you to build a countdown timer that will turn on a Light Emitting Diode (LED) two seconds after a button is pressed. She tells you that the LED will emit light when 2V is applied

across it.

Step 1 (Specification): Build a circuit that measures 2s after a button is pressed; and then applies 2V across a LED. Assume the Step 2 (Strategy): Describe your strategy pressed only once time since button pressed.

Push button -> Turn-on Timer -> Apply 2V

Step 3 (Implementation): Implement the components described in your strategy

Turn on circuit: -/-Timer Ic= Callo logether:

Step H: Verify: I1 = 0 (o.c. def.) Iz=-Is (clem. def) I1+ I2= 0 (KCL) $O + (-I_s) = O \times (Violention)$ Revise

Before button is pushed: Si is on.

J_S D J_S D J_t U_{time}

Vine .

Vi = 0 (wire def.)

Vtime = V, = 0

Ic = C dVtime = (

Is = Isw+ Je

 $I_s = I_{sw}$

When you push the button: Sq is off Utime (to) = 0 Utime (t) = $\frac{I_s}{c}$ (t-to) + 0 Utime (to + 28) = Vres