

Welcome to EECS 16A! Designing Information Devices and Systems I

Ana Arias and Miki Lustig

Lecture 1A Tomography and Linear Equations

Module 1: Imaging

Merriam-Webster: A visual representation of something

Merriam-Webster: the action or the process of producing an image

Different Images

Radiograph X-Ray

Cosmic-Microwave background Radiation

Imaging Systems in General

Imaging System

(electronics, control, computing, algorithms, visualization...)

"Medical imaging" circa 1632 "The Anatomy Lesson of Dr. Nicolaes Tulp", Rembrandt Mauritshuis, The Hague

Projection Xray

Projection Xray

Tomography

'tomo' – slice'graphy' – to write

Assume it is not desirable to slice open leg. How does tomography visualizes cross-sectional slices?

From Projections

Projections

Axial Slices

Sagittal Slices

3D Rendering from Slices

Computed Tomography

x-ray source

Computed Tomography

http://www.youtube.com/watch?v=4gklQHM19aY&feature=related

.... or y is the sum of x-ray attenuation coefficients along a line

Unknown

Measurement

1 equation 4 unknowns!

 $y = x_1 + x_2 + x_3 + x_4$

 $y_1 = x_1 + x_2$ $x_3 + x_4$ $y_2 =$ $y_3 = x_1 + x_3$ $y_4 = + x_2$ $+ x_4$

Can we solve this?

May be able to solve this!

 $2x_4$

Possible reconstruction

Blurred version of :

All our measurements are (converted to) *linear*

What does that mean? Each variable (x) is multiplied by a scalar to contribute to the measurement

 $y_1 = x_1 + x_2$ $y_2 = x_3 + x_4$ This is called a $y_3 = x_1 \qquad + x_3$ $y_4 = +x_2 + x_4$ $y_5 = \sqrt{2x_1} + \sqrt{2x_4}$

system of linear equations

Linear Algebra is what we need to solve it!

Camera Model

Lens maps image onto sensor Each pixel is sensed separately

Single Pixel Scanner

- What if we had only a single sensor?
- How can we create an image?

https://www.youtube.com/watch?v=U5PwsVqHT8Y

- Use a projector to illuminate pixels
- Sense reflected light with a sensor

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

Imaging Lab #1 Setup

Imaging Lab #1

- How many measurements do you need?
- What are the best patterns?

What is linear algebra?

- The study of linear functions and linear equations, typically using vectors and matrices
- Linearity is not always applicable, but can be a good first-order approximation
- There exist good fast algorithms to solve these problems

Linear Equations

• Definition:

Consider: $f(x_1, x_2, \dots, x_N) : \mathbb{R}^n \to \mathbb{R}$ f is linear if the following identity holds: (1) Homogeneity:

$$f(\alpha x_1, \cdots, \alpha x_N) = \alpha f(x_1, \ldots, x_N)$$

(2) Super Position (distributivity): if $x_i = y_i + z_i$, then

 $f(y_1 + z_1, \dots, y_N + z_N) = f(y_1, \dots, y_N) + f(z_1, \dots, z_N)$

Claim: linear functions can always be expressed as:

$$f(x_1, x_2, \dots, x_N) = c_1 x_1 + c_2 x_2 + \dots + c_N x_N$$

Proof for \mathbb{R}^2

• $f(x_1, x_2) : \mathbb{R}^2 \Rightarrow \mathbb{R}$ is linear. Need to prove: $f(x_1, x_2) = c_1 x_1 + c_2 x_2$ *Trick:*

$$x_1 = 1 \cdot x_1 + 0 \cdot x_2$$
$$x_2 = 0 \cdot x_1 + 1 \cdot x_2$$

So,

$$f(x_1, x_2) = f(x_1 \cdot 1 + x_2 \cdot 0, x_1 \cdot 0 + x_2 \cdot 1)$$

= $f(x_1 \cdot 1, x_1 \cdot 0) + f(x_2 \cdot 0, x_2 \cdot 1)$
= $f(x_1 \cdot 1, x_1 \cdot 0) + f(x_2 \cdot 0, x_2 \cdot 1)$
= $x_1 f(1, 0) + x_2 f(0, 1)$
 \downarrow_{c_4}

Linear Set of Equations

• Consider the set of M linear equations with N variables:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$$

$$\vdots$$

$$a_{M1}x_1 + a_{M2}x_2 + \dots + a_{MN}x_N = b_M$$

• Can be written compactly using augmented matrix:

a_{11}	a_{12}	• • •	a_{1N}	b_1
a_{21}	a_{22}	• • •	a_{2N}	b_2
•		• •		•
a_{M1}	a_{M2}	•••	a_{MN}	b_M

Back to Tomography

 $1 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 + 0 \cdot x_4 = 4$ $0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + 1 \cdot x_4 = 3$ $1 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + 0 \cdot x_4 = 2$ $0 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 + 1 \cdot x_4 = 5$ $\sqrt{2x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \sqrt{2}x_4} = 3\sqrt{2}$

Back to Tomography

$$1 \cdot x_{1} + 1 \cdot x_{2} + 0 \cdot x_{3} + 0 \cdot x_{4} = 4$$

$$0 \cdot x_{1} + 0 \cdot x_{2} + 1 \cdot x_{3} + 1 \cdot x_{4} = 3$$

$$1 \cdot x_{1} + 0 \cdot x_{2} + 1 \cdot x_{3} + 0 \cdot x_{4} = 2$$

$$0 \cdot x_{1} + 1 \cdot x_{2} + 0 \cdot x_{3} + 1 \cdot x_{4} = 5$$

$$\sqrt{2}x_{1} + 0 \cdot x_{2} + 0 \cdot x_{3} + \sqrt{2}x_{4} = 3\sqrt{2}$$

$$1 \quad 1 \quad 0 \quad 0 \quad 4$$

$$0 \quad 0 \quad 1 \quad 1 \quad 3$$

$$1 \quad 0 \quad 1 \quad 0 \quad 2$$

$$0 \quad 1 \quad 0 \quad 1 \quad 5$$

$$\sqrt{2} \quad 0 \quad 0 \quad \sqrt{2} \quad 3\sqrt{2}$$

How do we solve it?

Back to Tomography

How do we systematically solve it?

Algorithm for solving linear equations

- Three basic operations that don't change a solution:
 - 1. Multiply an equation with *nonzero* scalar
 - 2. Adding a scalar constant multiple of one equation to another
 - 3. Swapping equations

Algorithm for solving linear equations

- Three basic operations that don't change a solution:
 - 1. Multiply an equation with nonzero scalar
 - 2. Adding a scalar constant multiple of one equation to another

3. Swapping equations

(1)
$$x + y = 2$$

(2) $3x + 2y = 5$
and

(1) 3x + 2y = 5(2) x + y = 2 Have the same solution

Proof: Pretty obvious!

Algorithm for solving linear equations

• Three basic operations that don't change a solution:

1. Multiply an equation with nonzero scalar

2x + 3y = 4 has the same solution as: 4x + 6y = 8

Proof for N=2:

Let ax + by = c, with solution x_0, y_0 $\Rightarrow ax_0 + by_0 = c$

Show that $\beta ax + \beta by = \beta c$, has the same solution.

Substitute x_0, y_0 for x, y:

$$\beta a x_0 + \beta b y_0 = \beta c$$

$$\beta (a x_0 + b y_0) = \beta c$$

$$\beta c = \beta c$$
 But is it the only solution

 $\beta ax + \beta by = \beta c$, with solution: x_1, y_1 $\Rightarrow \beta ax_1 + \beta by_1 = \beta c$

Show that ax + by = c, has the same solution....

Since $\beta \neq 0....$

 $\beta a x_1 + \beta b y_1 = \beta c \Rightarrow a x_1 + b y_1 = c$

SOLUTION OF ONE, IMPLIES THE OTHER AND VICE-VERSA!