

Welcome to EECS 16A!

Designing Information Devices and Systems I

Ana Arias and Miki Lustig

Lecture 2B Span, Proofs Linear (in)dependance

Announcements

- Last time:
 - Continue vectors
 - Matrix-Matrix and Matrix-vector Multiplications
 - Matrix-Vector Multiplications as linear set of equations
- Today:
 - Span
 - Proofs
 - Linear (in)dependance

Matrix-Vector Form of Systems of Linear Equations

• Consider the matrix equation: $A\overrightarrow{x} = \overrightarrow{b}$

$$A\overrightarrow{x} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} & x_1 \\ a_{21} & a_{22} & \cdots & a_{2N} & x_2 \\ \vdots & & & & & \\ a_{M1} & a_{M2} & \cdots & a_{MN} \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1N}x_N \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2N}x_N \\ \vdots & & & \\ a_{M1}x_1 + a_{M2}x_2 + \cdots + a_{MN}x_N \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_M \end{bmatrix}$$

$$M \times N \quad N \times 1$$

Same as the Augmented Matrix!

 $A\overrightarrow{x} = \overrightarrow{b}$ is another way to write A linear set of equations!

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2N} & b_2 \\ \vdots & & \vdots & & \vdots \\ a_{M1} & a_{M2} & \cdots & a_{MN} & b_M \end{bmatrix}$$

• Row / Measurement Perspective of $A\overrightarrow{x} = \overrightarrow{b}$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

• Row / Measurement Perspective of $A\overrightarrow{x} = \overrightarrow{b}$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Q: What does a row mean?

A: How each variable affect a particular measurement

• Column Perspective of $A\overrightarrow{x} = \overrightarrow{b}$

$$\left[egin{array}{cccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight] = \left[egin{array}{c} b_1 \ b_2 \end{array}
ight]$$

$$\left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight] =$$

• Column Perspective of $A\overrightarrow{x} = \overrightarrow{b}$

$$\left[egin{array}{ccccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{array}
ight] \left[egin{array}{cccc} x_1 \ x_2 \ x_3 \end{array}
ight] = \left[egin{array}{cccc} b_1 \ b_2 \end{array}
ight]$$

$$\left[\begin{array}{cccc} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \\ \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]$$

• Column Perspective of $A\overrightarrow{x} = \overrightarrow{b}$

$$\left[egin{array}{ccccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight] = \left[egin{array}{c} b_1 \ b_2 \end{array}
ight]$$

$$\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \\ \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \vec{a}_1 + x_2 \vec{a}_2 + x_3 \vec{a}_3 =$$

• Column Perspective of $A\overrightarrow{x} = \overrightarrow{b}$

$$\left[egin{array}{cccccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ x_3 \ \end{array}
ight] = \left[egin{array}{c} b_1 \ b_2 \ \end{array}
ight]$$

$$\begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \vec{a_1} + x_2 \vec{a_2} + x_3 \vec{a_3} =$$

$$= \begin{bmatrix} a_{11}x_1 \\ a_{21}x_1 \end{bmatrix} + \begin{bmatrix} a_{12}x_2 \\ a_{22}x_2 \end{bmatrix} + \begin{bmatrix} a_{13}x_3 \\ a_{23}x_3 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Q: What does a column mean?

A: How a particular variable affects all measurements.

Linear combination of vectors

- Given set of vectors $\{\overrightarrow{a}_1, \overrightarrow{a}_2, \cdots, \overrightarrow{a}_M\} \in \mathbb{R}^N$, and coefficients $\{\alpha_1, \alpha_2, \cdots, \alpha_M\} \in \mathbb{R}^N$
- A linear combination of vectors is defined as: $\overrightarrow{b} \triangleq \alpha_1 \overrightarrow{a}_1 + \alpha_2 \overrightarrow{a}_2 + \cdots + \alpha_M \overrightarrow{a}_M$

Recall: \overrightarrow{Ax} :

$$= x_1 \vec{a}_1 + x_2 \vec{a}_2 + x_3 \vec{a}_3$$

Matrix-vector multiplication is a linear combination of the columns of A!

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\begin{matrix} \downarrow \\ \overrightarrow{a}_1 & \overrightarrow{a}_2 \end{matrix}$$

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\begin{matrix} \downarrow \\ \overrightarrow{a}_1 & \overrightarrow{a}_2 \end{matrix}$$

Q: What linear combination of \overrightarrow{a}_1 , \overrightarrow{a}_2 will give \overrightarrow{b} ?

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\begin{matrix} \downarrow \\ \overrightarrow{a}_1 & \overrightarrow{a}_2 \end{matrix}$$

Q: What linear combination of \overrightarrow{a}_1 , \overrightarrow{a}_2 will give \overrightarrow{b} ?

A: $2\overrightarrow{a}_1 + 1\overrightarrow{a}_2$

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\begin{cases} \frac{1}{a_1} & \frac{1}{a_2} \\ \frac{1}{a_2} & \frac{1}{a_2} \\ \frac{1}{a_2} & \frac{1}{a_2} \end{cases}$$

Q: What linear combination of \overrightarrow{a}_1 , \overrightarrow{a}_2 will give \overrightarrow{b} ?

A:
$$2\vec{a}_1 + 1\vec{a}_2$$
Course on Eliminotion:
$$\begin{bmatrix} 1 & 1 & | & 3 \\ 1 & -1 & | & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & | & 3 \\ 0 & 1 & | & 1 \end{bmatrix} \qquad x_1 = 2 \Rightarrow \vec{b} = 2\vec{a}_1 + 1 \cdot \vec{a}_2$$

$$\begin{bmatrix} 1 & 1 & | & 3 \\ 0 & -2 & | & -2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & 1 \end{bmatrix} \qquad x_2 = 1 \Rightarrow \vec{b} = 2\vec{a}_1 + 1 \cdot \vec{a}_2$$

$$x_1 = \lambda \qquad \Rightarrow \vec{b} = \lambda \vec{a} + 1 \cdot \vec{a}$$

$$x_2 = 1$$

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \vec{b}$$

$$\begin{cases} \vec{a}_1 & \vec{a}_2 \end{cases}$$

Q: Can linear combination of \overrightarrow{a}_1 , \overrightarrow{a}_2 give any \overrightarrow{b} ?

A: Hmmm....I think so....

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \vec{b}$$

$$\begin{matrix} \downarrow \\ \vec{a}_1 & \vec{a}_2 \end{matrix}$$

Q: Can linear combination of \overrightarrow{a}_1 , \overrightarrow{a}_2 give any \overrightarrow{b} ?

A: Hmmm....I don't think so.... Unless its along the line \overrightarrow{a}_1

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \vec{b}$$

$$\begin{cases} \frac{1}{a_1} & \frac{1}{a_2} \\ \frac{1}{a_2} & \frac{1}{a_2} \end{cases}$$

Q: Can linear combination of \overrightarrow{a}_1 , \overrightarrow{a}_2 give any \overrightarrow{b} ?

A: Hmmm....yes!

- Span of the columns of A is the set of all vectors \overrightarrow{b} such that $\overrightarrow{Ax} = \overrightarrow{b}$ has a solution
 - i.e. the set of all vectors that can be reached by all possible linear combinations of the columns of A

- Span of the columns of A is the set of all vectors \overrightarrow{b} such that $\overrightarrow{Ax} = \overrightarrow{b}$ has a solution
 - i.e. the set of all vectors that can be reached by all possible linear combinations of the columns of A

Example: What is the span of the cols of A?

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

- Span of the columns of A is the set of all vectors \overrightarrow{b} such that $\overrightarrow{Ax} = \overrightarrow{b}$ has a solution
 - i.e. the set of all vectors that can be reached by all possible linear combinations of the columns of A

Example: What is the span of the cols of A?

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

 $A: \mathbb{R}^2!$

- Span of the columns of A is the set of all vectors \overrightarrow{b} such that $A\overrightarrow{x} = \overrightarrow{b}$ has a solution
 - i.e. the set of all vectors that can be reached by all possible linear combinations of the columns of A

Example: What is the span of the cols of A?

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

A: \mathbb{R}^2 !

span(cols of
$$A$$
) = $\left\{ \vec{v} \middle| \vec{v} = \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$ $\alpha, \beta \in \mathbb{R}$

Example 2: What is the span of the cols of A?

$$A = \left[\begin{array}{cc} 1 & -1 \\ 1 & -1 \end{array} \right]$$

A: The line $x_1 = x_2$

$$\operatorname{span}(\operatorname{cols} \operatorname{of} A) = \left\{ \vec{v} \middle| \vec{v} = \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad \alpha \in \mathbb{R} \right\}$$

Definition:

If
$$\exists \overrightarrow{x} \text{ s.t. } A\overrightarrow{x} = \overrightarrow{b} \text{ then } \overrightarrow{b} \in \text{span}\{\text{cols}(A)\}$$

Q: What if $\overrightarrow{b} \notin \operatorname{span}\{\operatorname{cols}(A)\}$?

A: There is no solution for $A\overrightarrow{x} = \overrightarrow{b}$

• What are the values of a, b, c such that the Span{Cols of A) = \mathbb{R}^3

$$A = \begin{bmatrix} 1 & 1 & a \\ -1 & 1 & b \\ 0 & 0 & c \end{bmatrix}$$

Responses

Steps for a proof

- Write out the statement, note direction ("if" → "then")
- Try a simple example (to see a pattern)
 - Use what is known, definitions and other theorems
- Manipulate both sides of the arguments
 - Must justify each step
- Know the different styles of proofs to try
 - Constructive
 - Proof by contradiction

Algorithm for solving linear equations

- Three basic operations that don't change a solution:
 - 1. Multiply an equation with nonzero scalar

$$2x + 3y = 4$$
 has the same solution as: $4x + 6y = 8$

Proof for N=2:

Let
$$ax + by = c$$
, with solution x_0, y_0
 $\Rightarrow ax_0 + by_0 = c$

Show that $\beta ax + \beta by = \beta c$, has the same solution.

Substitute x_0, y_0 for x, y:

$$\beta ax_0 + \beta by_0 = \beta c$$

$$\beta (ax_0 + by_0) = \beta c$$

$$\beta c = \beta c$$
 But is it the only solution?

$$\beta ax + \beta by = \beta c$$
, with solution: x_1, y_1
 $\Rightarrow \beta ax_1 + \beta by_1 = \beta c$

Show that ax + by = c, has the same solution.....

Since
$$\beta \neq 0...$$

$$\beta ax_1 + \beta by_1 = \beta c \Rightarrow ax_1 + by_1 = c$$

SOLUTION OF ONE, IMPLIES THE OTHER AND VICE-VERSA!

Algorithm for solving linear equations

- Three basic operations that don't change a solution:
 - 1. Multiply an equation with *nonzero* scalar
 - 2. Adding a scalar constant multiple of one equation to another

Concept of proof: look at explicit solution, show they are the same Also show the reverse — by applying the reverse operations

- Span of the columns of A is the set of all vectors \overrightarrow{b} such that $\overrightarrow{Ax} = \overrightarrow{b}$ has a solution
 - i.e. the set of all vectors that can be reached by all possible linear combinations of the columns of A

• Definition:

If
$$\exists \overrightarrow{x}$$
 s.t. $A\overrightarrow{x} = \overrightarrow{b}$ then $\overrightarrow{b} \in \text{span}\{\text{cols}(A)\}$

Theorem: span
$$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} = \mathbb{R}^2$$

Know:

$$\operatorname{span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} \Rightarrow \left\{ \overrightarrow{v} \middle| \overrightarrow{v} = \alpha \begin{bmatrix} 1\\1 \end{bmatrix} + \beta \begin{bmatrix} 1\\-1 \end{bmatrix} \quad , \alpha, \beta \in \mathbb{R} \right\} = \mathbb{S}$$

Need to show:

$$\operatorname{span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} = \mathbb{R}^2$$

Concept: pick some specific
$$\overrightarrow{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \in R^2$$
, and show that it belongs to $\mathbb S$

Need to solve:

Theorem: span
$$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} = \mathbb{R}^2$$

Know:

$$\operatorname{span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} \Rightarrow \left\{ \overrightarrow{v} \middle| \overrightarrow{v} = \alpha \begin{bmatrix} 1\\1 \end{bmatrix} + \beta \begin{bmatrix} 1\\-1 \end{bmatrix} \quad , \alpha, \beta \in \mathbb{R} \right\} = \mathbb{S}$$

Need to show:

$$\operatorname{span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} = \mathbb{R}^2$$

Concept: pick some specific
$$\overrightarrow{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \in R^2$$
, and show that it belongs to $\mathbb S$

Need to solve:

$$\alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
unknown
And \(\in \mathbb{R}^2 \)

Need to solve:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Gaussian Elimination:

Need to solve:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$\frac{b_{1}+b_{2}}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{b_{1}-b_{2}}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix}$$

Constructive proof

Gaussian Elimination:

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & -1 & b_2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & -1 & b_1 \end{bmatrix} \begin{bmatrix} 1 & 1 & b_1 \\ 0 & -2 & b_2 - b_1 \end{bmatrix} \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\begin{cases} 1 & 0 \\ 0 & 1 \\ b_1 - b_1 \end{cases} \Rightarrow \alpha = \frac{b_1 + b_2}{2}, \beta = \frac{b_1 - b_2}{2},$$

Every $\overrightarrow{b} \in \mathbb{R}^2$ can be written as linear combinations! So also, $\overrightarrow{b} \in \mathbb{S}$

Linear Dependence

Recall:

$$A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$\stackrel{\checkmark}{a}_1 \quad \stackrel{\checkmark}{a}_2$$

$$\overrightarrow{a}_1 = -\overrightarrow{a}_2$$

Linear Dependence

Definition 1:

A set of vectors
$$\{\overrightarrow{a}_1, \overrightarrow{a}_2, \cdots, \overrightarrow{a}_N\}$$
 are linearly dependent if $\exists \{\alpha_1, \alpha_2, \cdots, \alpha_N\} \in \mathbb{R}$, such that: $\overrightarrow{a}_i = \sum \alpha_j \overrightarrow{a}_j \quad 1 \leq i, j \leq N$

For example: if
$$\overrightarrow{a}_2 = 3\overrightarrow{a}_1 - 2\overrightarrow{a}_5 + 6\overrightarrow{a}_7$$

$$\overrightarrow{a}_i = \sum_{j \neq i} \alpha_j \overrightarrow{a}_j \qquad 1 \le i, j \le N$$

 \overrightarrow{a}_i in the span of all \overrightarrow{a}_i s

Linear Dependence

Are these linearly dependent?

Need to solve:

Linear Dependence

Are these linearly dependent?

$$\begin{cases}
3 \\
4
\end{cases}$$
Are linearly dependent

Need to solve:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

but we showed that...
$$\frac{b_1 + b_2}{2} \left[\int_{-1}^{1} \frac{b_1 - b_2}{2} \left[-1 \right] = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

So....

$$\frac{3+1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{3-1}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Linear dependence / independence

$$\begin{cases} \begin{cases} J \\ J \end{cases}, \begin{bmatrix} J \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix} \end{cases} \Rightarrow 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} - \begin{bmatrix} 3 \\ 1 \end{bmatrix} = 0$$

Definition 2:

A set of vectors $\{\overrightarrow{a}_1, \overrightarrow{a}_2, \cdots, \overrightarrow{a}_N\}$ are linearly dependent if $\exists \{\alpha_1, \alpha_2, \cdots, \alpha_N\} \in \mathbb{R}$, such that: $\sum_{i=1}^{N} \alpha_i \overrightarrow{a}_i = 0$ As long as not all $a_i = 0$

Definition:

A set of vectors $\{\overrightarrow{a}_1, \overrightarrow{a}_2, \cdots, \overrightarrow{a}_N\}$ are linearly independent if they are not dependent

Linear dependence / independence

Are these linearly dependent?

Solutions for linear equations

• Theorem: if the columns of the matrix A are linearly dependent then, $\overrightarrow{Ax} = \overrightarrow{b}$ does <u>not</u> have a unique solution

PROOF Consider the counter-example
$$\mathbb{S} \triangleq \{0, \bullet\}, \ \tau \triangleq \{(\bullet, \bullet), \ (\bullet, \circ), \ (\circ, \circ)\}$$
 so that $\mathcal{M}_{\tau} = \{(i, \lambda \ell \cdot \bullet), \ (j, \lambda \ell \cdot \circ), \ (k, \lambda \ell \cdot (\ell < m ? \bullet i \circ))\}$. We let $\mathcal{X} \triangleq \{(i, \sigma) \mid \forall j < i : \sigma_j = \bullet\}$ so that $\neg FD(\mathcal{X})$. We have $\mathcal{M}_{\tau \downarrow \bullet} = \{(i, \lambda \ell \cdot \bullet), \ (k, \lambda \ell \cdot (\ell < m ? \bullet i \circ)) \mid k < m\}, \ \mathcal{M}_{\tau \downarrow \circ} = \{(i, \lambda \ell \cdot \bullet), \ (k, \lambda \ell \cdot (\ell < m ? \bullet i \circ)) \mid k \geq m\}$ and $\oplus \{\mathcal{X}\} = \{(i, \sigma) \mid \forall j \leq i : \sigma_j = \bullet\}$. We have $\alpha_{\mathcal{M}_{\tau}}^{\vee}(\oplus \{\mathcal{X}\}) = \{s \mid \mathcal{M}_{\tau \downarrow s} \subseteq \oplus \{\mathcal{X}\}\} = \{\bullet\}$ whereas $\widetilde{pre}[\tau](\alpha_{\mathcal{M}_{\tau}}^{\vee}(\mathcal{X})) = \widetilde{pre}[\tau](\{s \mid \mathcal{M}_{\tau \downarrow s} \subseteq \mathcal{X}\}) = \widetilde{pre}[\tau](\{\bullet\})$ = $\{s \mid \forall s' : t(s, s') \Rightarrow s' = \bullet\} = \emptyset$ since $t(s, \bullet)$ implies $s = \bullet$ and $t(\bullet, \circ)$ holds.

Solutions for linear equations

• Theorem: if the columns of the matrix A are linearly dependent then, $\overrightarrow{Ax} = \overrightarrow{b}$ does <u>not</u> have a unique solution

Proof for $A \in \mathbb{R}^{3 \times 3}$

know: columns are linearly independent show: more than 1 solution

Concept: pick some specific solution \overrightarrow{x}^* , and show that there's another one

Let: $A\overrightarrow{x}^* = \overrightarrow{b}$ and $A = \begin{bmatrix} \overrightarrow{a_1} & \overrightarrow{a_2} & \overrightarrow{a_3} \end{bmatrix}$

From linear dependence Def 2:

$$\alpha_1 \overrightarrow{a_1} + \alpha_2 \overrightarrow{a_2} + \alpha_3 \overrightarrow{a_3} = 0$$

Solutions for linear equations

 Theorem: if the columns of the matrix A are linearly dependent then, $\overrightarrow{Ax} = \overrightarrow{b}$ does <u>not</u> have a unique solution

Proof for $A \in \mathbb{R}^{3\times 3}$

know: columns are linearly dependent

show: more than 1 solution

Concept: pick some specific solution \overrightarrow{x}^* , and show that there's another one

Let:
$$A\overrightarrow{x}^* = \overrightarrow{b}$$
 and $A = \begin{bmatrix} \overrightarrow{a_1} & \overrightarrow{a_2} & \overrightarrow{a_3} \end{bmatrix}$

From linear dependence Def 2:
$$\alpha_{1}\overrightarrow{a_{1}} + \alpha_{2}\overrightarrow{a_{2}} + \alpha_{3}\overrightarrow{a_{3}} = 0 \longrightarrow \left[\overrightarrow{a_{1}} \ \overrightarrow{a_{1}} \ \overrightarrow{a_{2}} \ \overrightarrow{a_{3}}\right] \left[\overrightarrow{a_{1}} \ \overrightarrow{a_{2}}\right] \Rightarrow A\overrightarrow{\alpha} = 0$$
 Set $\overrightarrow{x}^{\dagger} = \overrightarrow{x}^{*} + \overrightarrow{\alpha}$

$$\Rightarrow A\overrightarrow{x}^{\dagger} = A(\overrightarrow{x}^* + \overrightarrow{\alpha}) = A\overrightarrow{x}^* + A\overrightarrow{\alpha} = \overrightarrow{b} + 0$$

Matrix Transformations

$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} \Omega_{2} & \Omega_{2} \\ \Omega_{2} \end{bmatrix}$$

$$\overrightarrow{Ax} = \overrightarrow{b}$$

Example:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$$

$$\overrightarrow{Ax} = \overrightarrow{b}$$

Example:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$$

$$\overrightarrow{Ax} = \overrightarrow{b}$$

Example:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$$

Reflection Matrix!

$$\overrightarrow{Ax} = \overrightarrow{b}$$

Example:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$$

Reflection Matrix!

Example 2:
$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta)x_1 - \sin(\theta)x2 \\ \sin(\theta)x_1 + \cos(\theta)x_2 \end{bmatrix}$$

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$$

Rotation Matrix!

$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} \Omega_{2} & \Omega_{2} \end{bmatrix}$$

Linear Transformation of vectors

f: is a linear transformation if:

$$f(\alpha \overrightarrow{x}) = \alpha f(\overrightarrow{x}) \qquad \alpha \in \mathbb{R}$$
$$f(\overrightarrow{x} + \overrightarrow{y}) = f(\overrightarrow{x}) + f(\overrightarrow{y})$$

Claim: Matrix-vector multiplications satisfy linear transformation

$$A \cdot (\alpha \overrightarrow{x}) = \alpha A \overrightarrow{x}$$

Proof via explicitly writing the elements

$$A \cdot (\overrightarrow{x} + \overrightarrow{y}) = A\overrightarrow{x} + A\overrightarrow{y}$$