

Announcements

- Last time:
- Proofs
- Span
- Today:
- Linear (in)dependance
- Matrix Transformations

Span / Column Space / Range

- Span of the columns of A is the set of all vectors \vec{b} such that $A \vec{x}=\vec{b}$ has a solution
- i.e. the set of all vectors that can be reached by all possible linear combinations of the columns of A
- Definition:

$$
\text { If } \exists \vec{x} \text { s.t. } A \vec{x}=\vec{b} \text { then } \vec{b} \in \operatorname{span}\{\operatorname{cols}(A)\}
$$

Proof: Span

Theorem: span $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}=\mathbb{R}^{2}$
Know:
$\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\} \Rightarrow\left\{\vec{v} \left\lvert\, \vec{v}=\alpha\left[\begin{array}{l}1 \\ 1\end{array}\right]+\beta\left[\begin{array}{c}1 \\ -1\end{array}\right] \quad\right., \alpha, \beta \in \mathbb{R}\right\}=\mathbb{S}$
Need to show:

$$
\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}=\mathbb{R}^{2}
$$

Concept: pick some specific $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right] \in R^{2}$, and show that it belongs to \mathbb{S}
Need to solve:

Proof: Span

Theorem: span $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}=\mathbb{R}^{2}$

Know:
$\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\} \Rightarrow\left\{\vec{v} \left\lvert\, \vec{v}=\alpha\left[\begin{array}{l}1 \\ 1\end{array}\right]+\beta\left[\begin{array}{c}1 \\ -1\end{array}\right] \quad\right., \alpha, \beta \in \mathbb{R}\right\}=\mathbb{S}$

Need to show:

$$
\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}=\mathbb{R}^{2}
$$

Concept: pick some specific $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right] \in R^{2}$, and show that it belongs to \mathbb{S}
Need to solve:

Proof: Span

Need to solve:

$$
\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
\beta
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

Gaussian Elimination:

Proof: Span
Need to solve:

$$
\frac{b_{1}+b_{2}}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{b_{1}-b_{2}}{2}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

Constructive proof

Gaussian Elimination:

$$
\left[\begin{array}{cc|c}
1 & 1 & b_{1} \\
1 & -1 & b_{2}
\end{array}\right]\left[\begin{array}{ll|l}
1 & 1 & b_{1} \\
0 & -2 & b_{2}-b_{1}
\end{array}\right] \quad\left[\begin{array}{ll|l}
1 & 1 & b_{1} \\
0 & 1 & \frac{b_{1}-b_{2}}{2}
\end{array}\right]
$$

$$
\left[\begin{array}{ll|l}
1 & 0 & \frac{b_{1}+b_{2}}{\alpha} \\
0 & 1 & \frac{b_{1}-b_{2}}{2}
\end{array}\right] \Rightarrow \alpha=\frac{b_{1}+b_{2}}{2}, \beta=\frac{b_{1}-b_{2}}{2}
$$

Every $\vec{b} \in \mathbb{R}^{2}$ can be written as linear combinations! So also, $\vec{b} \in \mathbb{S}$

Linear Dependence

Recall:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right] \\
\stackrel{\downarrow}{\vec{a}_{1}} \\
\stackrel{\downarrow}{a_{2}}
\end{gathered}
$$

\vec{a}_{1} and \vec{a}_{2} are linearly dependent

$$
\vec{a}_{1}=-\vec{a}_{2}
$$

Linear Dependence

- Definition 1:

A set of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{N}\right\}$ are linearly dependent if
$\exists\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right\} \in \mathbb{R}$, such that: $\quad \vec{a}_{i}=\sum_{j \neq i} \alpha_{j} \vec{a}_{j} \quad 1 \leq i, j \leq M$
For example: if $\vec{a}_{2}=3 \vec{a}_{1}-2 \vec{a}_{5}+6 \vec{a}_{7}$

$$
\vec{a}_{i} \text { in the span of all } \vec{a}_{j} \mathrm{~s}
$$

Linear Dependence

Are these linearly dependent?

$$
\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right\}
$$

Need to solve:

Linear Dependence
Are these linearly dependent?

$$
\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right\}
$$

Are linearly dependent

Need to solve:
but we showed that..

$$
\frac{b_{1}+b_{2}}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{b_{1}-b_{2}}{2}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

So....

$$
\frac{3+1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{3-1}{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=2\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Linear dependence / independence

$$
\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
3 \\
3
\end{array}\right]\right\} \Rightarrow 2\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
1 \\
-1
\end{array}\right]-\left[\begin{array}{l}
3 \\
1
\end{array}\right]=0
$$

- Definition 2:

A set of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{N}\right\}$ are linearly dependent if $\exists\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right\} \in \mathbb{R}$, such that:

$$
\sum_{i=1}^{N} \alpha_{i} \vec{a}_{i}=0
$$

- Definition:

A set of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{N}\right\}$ are linearly independent if they are not dependent

Linear dependence / independence

Are these linearly dependent?

$$
\underbrace{\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
\pi \\
\sqrt{2}
\end{array}\right]\right\}}_{\text {spon }=\mathbb{R}^{2}} \underbrace{}_{\in \mathbb{R}^{2}}{ }^{\text {innearity dependentu }}
$$

Solutions for linear equations

- Theorem: if the columns of the matrix A are linearly dependent then, $A \vec{x}=\vec{b}$ does not have a unique solution

```
Proof Consider the counter-example S # {O,\bullet}, \tau \triangleq
{(\bullet,\bullet\rangle,\langle\bullet,O\rangle,\langleO,O\rangle} so that }\mp@subsup{M}{\tau}{}={{i,\lambda,\ell\cdot\bullet\rangle,\langlej,\lambda,\ell\cdotO\rangle
{k,\lambda\ell\cdot(\ell<m?\bulletiO))}. We let }X\triangleq{{i,\sigma\rangle|\forallj<i
```



```
(k,\lambda\ell\cdot(\ell<m?\bulletiO)) | k<m), 茴 (\downarrowO = {(j,\lambda\ell:O),
(k,\lambda\ell\cdot(\ell<m?\bulletiO))|k\geqm} and }\oplus|X|={(i,\sigma)|\forallj
i:\mp@subsup{\sigma}{j}{}=\bullet}.\mathrm{ We have }\mp@subsup{\alpha}{\mp@subsup{M}{r}{}}{v}}(\oplus|X|)={s|\mp@subsup{\mathcal{M}}{\tau\downarrows}{}\subseteq\oplus{X{}}={\bullet
whereas \tilde{pre}[\tau](\mp@subsup{\alpha}{\mp@subsup{M}{T}{}}{\vee}}(X))=\tilde{pre}[\tau]([s|\mp@subsup{\mathcal{M}}{\tau\downarrows}{}\subseteqX])=\tilde{pre}[\tau]((\bullet)
={s|\forall\mp@subsup{s}{}{\prime}:t(s,\mp@subsup{s}{}{\prime})=>\mp@subsup{s}{}{\prime}=\bullet\bullet=\emptyset since t(s,\bullet) implies s=\bullet and
t(0,O) holds.
```


Solutions for linear equations

- Theorem: if the columns of the matrix A are linearly dependent then, $A \vec{x}=\vec{b}$ does not have a unique solution
Proof for $A \in \mathbb{R}^{3 \times 3}$
know: columns are linearly show: more than 1 solution
Concept: pick some specific solution $\vec{x} *$, and show that there's another one
Let: $A \vec{x}^{*}=\vec{b}$ and $A=\left[\begin{array}{lll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \vec{a}_{3}\end{array}\right]$
From linear dependence Def 2:

$$
\alpha_{1} \overrightarrow{a_{1}}+\alpha_{2} \overrightarrow{a_{2}}+\alpha_{3} \overrightarrow{a_{3}}=\overrightarrow{0}
$$

Solutions for linear equations

- Theorem: if the columns of the matrix A are linearly dependent then, $A \vec{x}=\vec{b}$ does not have a unique solution
Proof for $A \in \mathbb{R}^{3 \times 3}$
know: columns are linearly dependent
Concept: pick some specific solution $\vec{x} *$, and show that there's another one
Let: $A \vec{x}^{*}=\vec{b}$ and $A=\left[\begin{array}{lll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \overrightarrow{a_{3}}\end{array}\right]$

$$
\begin{aligned}
& \text { From linear dependence Def 2: } \\
& \alpha_{1} \overrightarrow{a_{1}}+\alpha_{2} \vec{a}_{2}+\alpha_{3} \vec{a}_{3}=\overrightarrow{0} \rightarrow\left[\begin{array}{lll}
\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \overrightarrow{a_{3}}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=0 \rightarrow \vec{\alpha} \\
& \text { Set } \vec{x}^{\dagger}=\vec{x}^{*}+\vec{\alpha} \\
& \Rightarrow A \vec{x}^{\dagger}=A\left(\vec{x}^{*}+\vec{\alpha}\right)=A \vec{x} *+A \vec{\alpha}=\vec{b}+0
\end{aligned}
$$

Matrix Transformations

$$
\left[\begin{array}{c}
\cos x^{\circ} \sin 80^{\circ} \\
-\sin x^{\circ} \cos 80^{\circ}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=?
$$

Matrices are operators that transform vectors

$$
A \vec{x}=\vec{b}
$$

Example:

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
-x_{2}
\end{array}\right]
$$

Matrices are operators that transform vectors

$$
A \vec{x}=\vec{b}
$$

Example:

$\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ -x_{2}\end{array}\right]$
https://www.youtube.com/watch?v=LhF_56SxrGk

Matrices are operators that transform vectors

$$
A \vec{x}=\vec{b}
$$

Example:

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
-x_{2}
\end{array}\right]
$$

Reflection Matrix!

Matrices are operators that transform vectors

$$
A \vec{x}=\vec{b}
$$

Example:

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
-x_{2}
\end{array}\right]
$$

Reflection Matrix!

Matrices are operators that transform vectors

Example 2:
 $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}\cos (\theta) x_{1}-\sin (\theta) x_{2} \\ \sin (\theta) x_{1}+\cos (\theta) x_{2}\end{array}\right]$

$$
\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]
$$

Rotation Matrix!

$$
\left[\begin{array}{l}
\cos 90^{\circ} \sin 90^{\circ} \\
-\sin 90^{\circ} \cos 90^{\circ}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=00
$$

Linear Transformation of vectors

f : is a linear transformation if:

$$
\begin{aligned}
& f(\alpha \vec{x})=\alpha f(\vec{x}) \quad \alpha \in \mathbb{R} \\
& f(\vec{x}+\vec{y})=f(\vec{x})+f(\vec{y})
\end{aligned}
$$

Claim: Matrix-vector multiplications satisfy linear transformation

$$
\begin{aligned}
A \cdot(\alpha \vec{x}) & =\alpha A \vec{x} \quad \text { Proof via explicitly writing the elements } \\
A \cdot(\vec{x}+\vec{y}) & =A \vec{x}+A \vec{y}
\end{aligned}
$$

Vectors as states, Matrices as state transition

Vectors can represent states of a system
Example: The state of a car at time $=\mathrm{t}$

$$
\left.\vec{S}(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
v(t) \\
y(t)
\end{array}\right]\right\} \text { position }
$$

Q: Is that enough?
A: need orientation or $v_{x}(t), v_{y}(t)$

Graph Transition Matrices

Example: Reservoirs and Pumps

Q: What is the state?
A: Water in each reservoir

$$
\vec{x}(t)=\left[\begin{array}{l}
x_{A}(t) \\
x_{B}(t) \\
x_{C}(t)
\end{array}\right]
$$

Pumps move water...
What would the state be tomorrow?

State Transition Matrices

State Transition Matrices

$$
\begin{aligned}
& x_{A}(t+1)=x_{A}(t) \\
& x_{B}(t+1)=x_{C}(t) \\
& x_{C}(t+1)=x_{B}(t)
\end{aligned}
$$

Write as a matrix-vector multiplication:

State Transition Matrices

$$
\begin{aligned}
& x_{A}(t+1)=x_{A}(t) \\
& x_{B}(t+1)=x_{C}(t) \\
& x_{C}(t+1)=x_{B}(t)
\end{aligned}
$$

Write as a matrix-vector multiplication:

$$
\left[\begin{array}{l}
x_{A}(t+1) \\
x_{B}(t+1) \\
x_{C}(t+1)
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{A}(t) \\
x_{B}(t) \\
x_{C}(t)
\end{array}\right] \quad \text { or } \vec{x}(t+1)=Q \vec{x}(t)
$$

What is the state after 2 times?

$$
\vec{x}(t+2)=Q \vec{x}(t+1)=Q Q \vec{x}(t)=Q^{2} \vec{x}(t)
$$

State Transition Matrices

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{A}(t+1) \\
x_{B}(t+1) \\
x_{C}(t+1)
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{A}(t) \\
x_{B}(t) \\
x_{C}(t)
\end{array}\right]} \\
& \vec{x}(0)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text { What is the state after at } \mathrm{t}=1,2 ?
\end{aligned}
$$

State Transition Matrices

$$
\left[\begin{array}{l}
x_{A}(t+1) \\
x_{B}(t+1) \\
x_{C}(t+1)
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{A}(t) \\
x_{B}(t) \\
x_{C}(t)
\end{array}\right]
$$

$\vec{x}(0)=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \quad$ What is the state after at $t=1,2$?
(1)

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] } & =\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
Q \cdot Q & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

State Transition Matrices

State Transition Matrices

$$
\begin{aligned}
& x[t+1]=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0
\end{array}\right] x(t) \\
& Q^{2}=\left[\begin{array}{lll}
\frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{4}
\end{array}\right]
\end{aligned}
$$

Q) What will happen if we keep going?
A) Numbers will diminish to zero

State Transition Matrices

Q) What will happen if we keep going?
A) Numbers will explode to infinity

Graph Representation

Ex: Reservoirs and Pumps

Nodes
I have 3 reservoirs: A, B, C and I want to keep track of how much water is in each

When I turn on some pumps, water moves between the reservoirs.

Where the water moves and what fraction is represented by arrows.
Edge weights
Edges
"directed" graph because arrows have a direction
Where does the rest of the water in A go? Need to label that too...

Exercise:

$$
\left[\begin{array}{l}
x_{A}(t+1) \\
x_{B}(t+1) \\
x_{C}(t+1)
\end{array}\right]=\left[\begin{array}{lll}
A \rightarrow A & B \rightarrow A & C \rightarrow A \\
A \rightarrow B & B \rightarrow B & C \rightarrow B
\end{array}\right]\left[\begin{array}{l}
x_{A}(t) \\
x_{B}(t) \\
\\
x_{C}(t)
\end{array}\right] 1 / 2
$$

Exercise:

$$
\left[\begin{array}{l}
x_{A}(t+1) \\
x_{B}(t+1) \\
x_{c}(t+1)
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{6} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & 0 \\
0 & \frac{1}{2} & \frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
x_{A}(t) \\
x_{B}(t) \\
x_{C}(t)
\end{array}\right]
$$

Example 2:

$$
\left[\begin{array}{l}
x_{A}(t+1) \\
x_{B}(t+1) \\
x_{c}(t+1)
\end{array}\right]=\left[\begin{array}{lll}
A \rightarrow A & B \rightarrow A & c \rightarrow A \\
A \rightarrow B & B \rightarrow B & c \rightarrow B \\
A \rightarrow C & B \rightarrow C & c \rightarrow[
\end{array}\right]\left[\begin{array}{l}
x_{A}(t) \\
x_{\beta}(t) \\
x_{C}(t)
\end{array}\right]
$$

Example 2:

$$
\left[\begin{array}{l}
x_{A}(t+1) \\
x_{B}(t+1) \\
x_{c}(t+1)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{2} & 0 & 1 \\
\frac{1}{2} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{\alpha}(t) \\
x_{\beta}(t) \\
x_{C}(t)
\end{array}\right]
$$

What about the reverse?

$$
\left[\begin{array}{l}
x_{A}(t+1) \\
x_{\beta}(t+1) \\
x_{c}(t+1)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{2} & 0 & 1 \\
\frac{1}{2} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{A}(t) \\
x_{\beta}(t) \\
x_{c}(t)
\end{array}\right]
$$

Q) Will flipping the arrows make us go back in time?

What about the reverse?

$$
\left[\begin{array}{l}
x_{A}(t+1) \\
x_{p}(t+1) \\
x_{c}(t+1)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
\frac{1}{2} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{n}(t) \\
x_{\beta}(t) \\
x_{C}(t)
\end{array}\right]
$$

Q) Will flipping the arrows make us go back in time?

What about the reverse?

$$
\left[\begin{array}{l}
x_{A}(t+1) \\
x_{p}(t+1) \\
x_{c}(t+1)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
\frac{1}{2} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{n}(t) \\
x_{\beta}(t) \\
x_{C}(t)
\end{array}\right]
$$

Q) Will flipping the arrows make us go back in time?

$$
\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

What about the reverse?

Q) Will flipping the arrows make us go back in time?

$$
[][4][5]
$$

What about the reverse?

Q) Will flipping the arrows make us go back in time?

A) In general, no!

Matrix Transpose

If the elements of the matrix $A \in \mathbb{R}^{N \times M}$ are $a_{i j}$
The elements of $A^{T} \in \mathbb{R}^{M \times N}$ are $a_{j i}$
Matrix transpose is not (generally) an inverse!

$$
\left[\begin{array}{ccc}
\overrightarrow{a_{1}} & \vec{a}_{2} & \cdots \\
\vec{a}_{\mu}
\end{array}\right]_{\mathbb{R}^{N \times M}}\left[\begin{array}{c}
\overrightarrow{a_{1}^{\top}} \\
\overrightarrow{a_{2}^{\top}} \\
\vec{a}_{\mu}^{\top}
\end{array}\right]_{A^{T} \in \mathbb{R}^{M \times N}}
$$

Matrix Transpose

If the elements of the matrix $A \in \mathbb{R}^{N \times M}$ are $a_{i j}$
The elements of $A^{T} \in \mathbb{R}^{M \times N}$ are $a_{j i}$
Matrix transpose is not (generally) an inverse!

Matrix Transpose

If the elements of the matrix $A \in \mathbb{R}^{N \times M}$ are $a_{i j}$
The elements of $A^{T} \in \mathbb{R}^{M \times N}$ are $a_{j i}$
Matrix transpose is not (generally) an inverse!

Matrix Inversion

