





# Welcome to EECS 16A!

**Designing Information Devices and Systems I** 



#### Ana Claudia Arias and Miki Lustig Fall 2022

Module 2 Lecture 1 Introduction to Circuit Analysis (Note 11)



#### **Designing Information Devices and Systems**



Analog World S

Sensor

Processing

Actuation







## System Example - Electromyography

- Monitors muscle activity
- Used in gesture recognition
- Impact in rehabilitation

- X Bulky electrodes
- X Poor accuracy low resolution
- X Computation performed on external devices





### System Example - Electromyography



#### In Module 2 we will learn how to analyze circuits



We need to be able to go from a real-world circuit, to a circuit model, and vice versa.

#### In Module 2 we will learn how to analyze circuits



We need to be able to go from a real-world circuit, to a circuit model, and vice versa.



Then we need to know how to solve the model...

Note: the tool used by computers to analyze circuits is *linear algebra*!

#### **First: Science Review**

actinides



post-transition metals metalloids

reactive nonmetals noble gases

#### First: Science Review



### **First: Science Review**







| Element   | Symbol | E |  |
|-----------|--------|---|--|
| Scandium  | Sc     | 1 |  |
| Titanium  | Ti     | 1 |  |
| Vanadium  | v      | 1 |  |
| Chromium  | Cr     | 1 |  |
| Manganese | Mn     | 1 |  |
| Iron      | Fe     | 1 |  |
| Cobalt    | Co     | 1 |  |
| Nickel    | Ni     | 1 |  |
| Copper    | Cu     | 1 |  |
| Zinc      | Zn     |   |  |

| <b>Electronic Configuration</b>                                                                                 |  |
|-----------------------------------------------------------------------------------------------------------------|--|
| 1s2 2s2 2p6 3s2 3p6 3d1 4s2                                                                                     |  |
| 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>2</sup> 4s <sup>2</sup> |  |
| $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$                                                                            |  |
| 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>5</sup> 4s <sup>1</sup> |  |
| 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>8</sup> 4s <sup>2</sup> |  |
| 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>6</sup> 4s <sup>2</sup> |  |
| 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>7</sup> 4s <sup>2</sup> |  |
| $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$                                                                            |  |
| $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$                                                                         |  |
| 1s2 2s2 2p6 3s2 3p6 3d10 4s2                                                                                    |  |

#### Second: a tiny bit of Solid-State Physics



#### Electronic Devices depend on movement of charges

#### **Electrical Quantities**

| Quantities | Analytical Symbol | Units       |
|------------|-------------------|-------------|
| Current    | I                 | Amperes (A) |
| Voltage    | V                 | Volts (V)   |
| Resistance | R                 | Ohms (IL)   |



# In the lab



# In the lab









#### Definitions needed to analyze a circuit : Circuit Diagram

Collection of elements, where each element has some voltage across it and some current through it



Key circuit elements: Wire





Key circuit elements: Resistor







Key circuit elements: Open circuit

+

Velem









# Key circuit elements: Current Source Iclem Iclem = Is Velem = ? (V is set by external circuit) I clem can be positive or negative Velem and

#### Definitions needed to analyze a circuit : Circuit Diagram

Collection of elements, where each element has some voltage across it and some current through it





### **Circuit Analysis Algorithm**

Voltage = difference of two potential

Find: currents through elements and potentials of inputs/outputs of each element (junctions)



### Electronic Devices depend on movement of charges



We always need to define a reference for potentials. Ground = 0

 $V_2, V_3$ potentials  $V_1 = U_1 - U_2$  $V_2 = U_2 - U_3$  $= V_1 + V_2$ 

#### Rules for circuit analysis: Kirchoff's Voltage Law (KVL)

Sum of Voltages across the elements in a loop equal zero

$$+ V_{elc} - V_{el} - V_{el}$$

#### Rules for circuit analysis: Kirchoff's Current Law (KCL)

The current flowing into any junction must equal the current flowing out



Iel, = Iclz Jolz = Jolz Ida = Ida Joly = John

Iels + Iak = Iel:

#### Rules for circuit analysis: KCL within the element

The current flowing into any junction must equal the current flowing out

