

Welcome to EECS 16A!

Designing Information Devices and Systems I

Ana Arias and Miki Lustig

Lecture 4A Matrix Inverse

Announcements

- Last time:
 - Linear (in)dependance
 - Matrix Transformations
- Today:
 - Continue with Matrix transformations
 - Matrix Inverse
 - Vector spaces

Matrix Transformations

$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} \Omega_{2} & \Omega_{2} \\ \Omega_{2} \end{bmatrix}$$

Linear Transformation of vectors

f: is a linear transformation if:

$$f(\alpha \overrightarrow{x}) = \alpha f(\overrightarrow{x}) \qquad \alpha \in \mathbb{R}$$
$$f(\overrightarrow{x} + \overrightarrow{y}) = f(\overrightarrow{x}) + f(\overrightarrow{y})$$

Claim: Matrix-vector multiplications satisfy linear transformation

$$A \cdot (\alpha \overrightarrow{x}) = \alpha A \overrightarrow{x}$$

Proof via explicitly writing the elements

$$A \cdot (\overrightarrow{x} + \overrightarrow{y}) = A\overrightarrow{x} + A\overrightarrow{y}$$

Vectors as states, Matrices as state transition

Vectors can represent states of a system

Example: The state of a car at time = t

$$\vec{S}(t) = \begin{cases} x(t) \\ y(t) \\ y(t) \\ y(t) \end{cases} \vec{S} \text{ position}$$

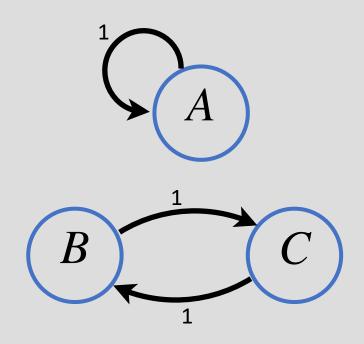
$$\vec{S}(t) = \begin{cases} y(t) \\ y(t) \\ y(t) \\ y(t) \end{cases} \vec{S} \text{ velocity}$$

Q: Is that enough?

A: need orientation or $v_x(t)$, $v_y(t)$

Graph Transition Matrices

Example: Reservoirs and Pumps

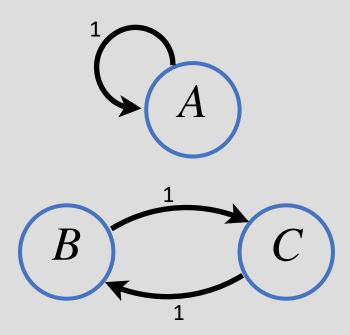


Q: What is the state?

A: Water in each reservoir

$$\overrightarrow{x}(t) = \begin{bmatrix} x_A(t) \\ x_B(t) \\ x_C(t) \end{bmatrix}$$

Pumps move water...
What would the state be tomorrow?

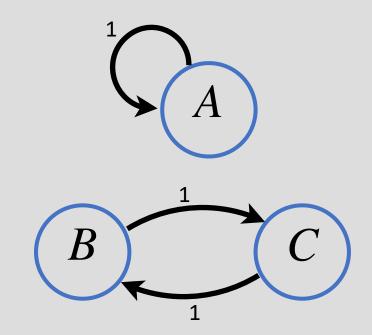


$$x_A(t + 1) = x_A(t)$$

 $x_B(t + 1) = x_C(t)$
 $x_C(t + 1) = x_B(t)$

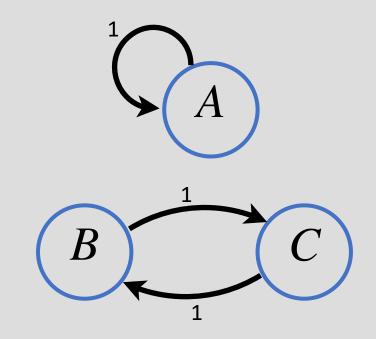
Write as a matrix-vector multiplication:

$$\begin{bmatrix} x_A(t+1) \\ x_B(t+1) \\ x_C(t+1) \end{bmatrix} = \begin{bmatrix} x_A(t) \\ x_B(t) \\ x_C(t) \end{bmatrix}$$



$$x_A(t + 1) = x_A(t)$$

 $x_B(t + 1) = x_C(t)$
 $x_C(t + 1) = x_B(t)$



Write as a matrix-vector multiplication:

$$\begin{bmatrix} x_A(t+1) \\ x_B(t+1) \\ x_C(t+1) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_A(t) \\ x_B(t) \\ x_C(t) \end{bmatrix} \quad \text{or } \overrightarrow{x}(t+1) = Q\overrightarrow{x}(t)$$

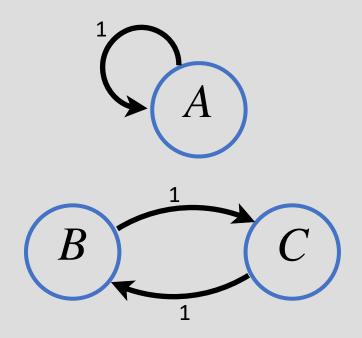
or
$$\overrightarrow{x}(t+1) = Q\overrightarrow{x}(t)$$

What is the state after 2 times?

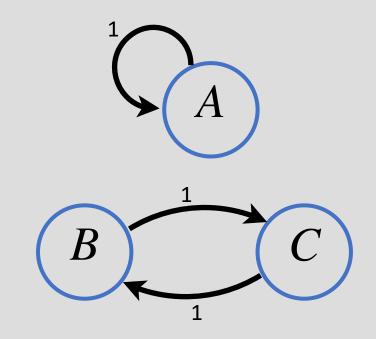
$$\overrightarrow{x}(t+2) = Q\overrightarrow{x}(t+1) = QQ\overrightarrow{x}(t) = Q^2\overrightarrow{x}(t)$$

$$\begin{bmatrix} x_A(t+1) \\ x_B(t+1) \\ x_C(t+1) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_A(t) \\ x_B(t) \\ x_C(t) \end{bmatrix}$$

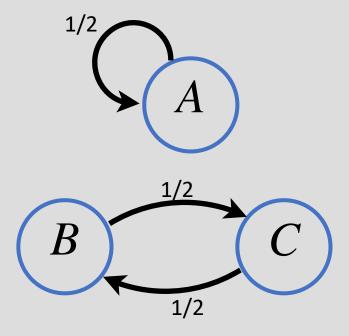
$$\vec{x}(0) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 What is the state after at t=1, 2?

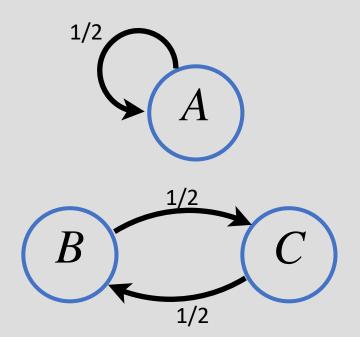


$$\begin{bmatrix} x_A(t+1) \\ x_B(t+1) \\ x_C(t+1) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_A(t) \\ x_B(t) \\ x_C(t) \end{bmatrix}$$



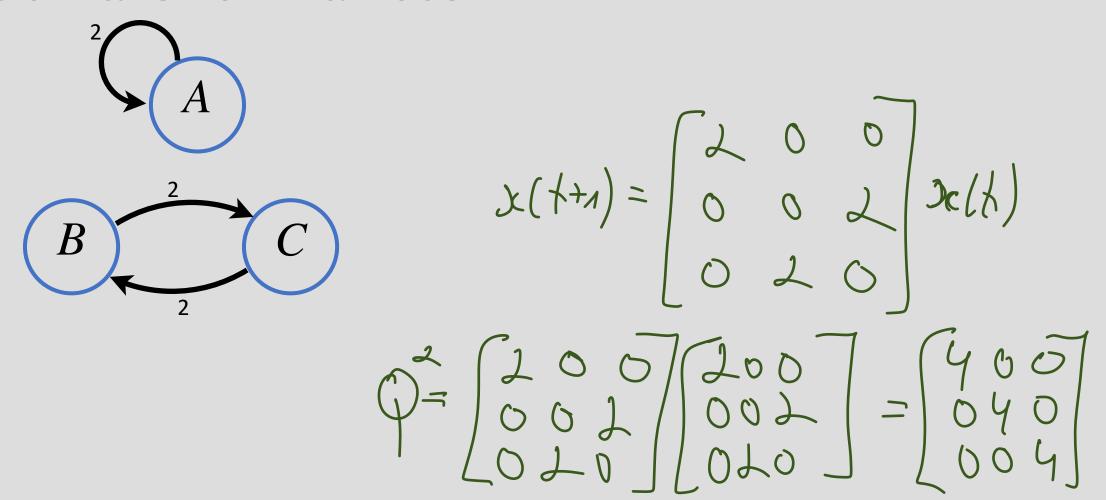
$$x^2(0) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 What is the state after at t=1, 2?





$$Q^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
Non-conservative!

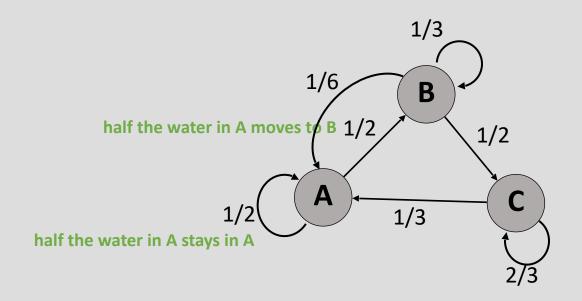
- Q) What will happen if we keep going?
- A) Numbers will diminish to zero



- Q) What will happen if we keep going?
- A) Numbers will explode to infinity

Graph Representation

Ex: Reservoirs and Pumps



Nodes

I have 3 reservoirs: A,B,C and I want to keep track of how much water is in each

When I turn on some pumps, water moves between the reservoirs.

Where the water moves and what fraction is represented by arrows. Edge weights Edges

"directed" graph because arrows have a direction

Where does the rest of the water in A go?

Need to label that too...

Can you tell me how much water in each after pumps start?

Need to know initial amounts

Exercise:

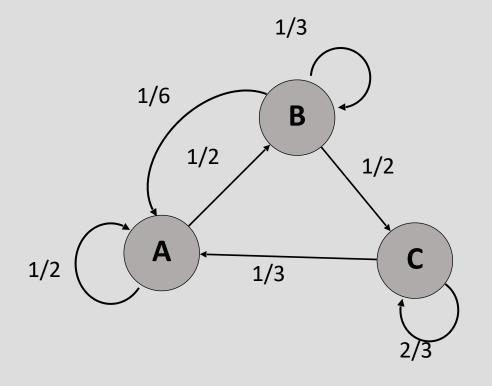
$$\begin{bmatrix}
J_{C_{A}}(+A) \\
J_{C_{A}}(+A)
\end{bmatrix} = \begin{bmatrix}
A \to A & B \to A & C \to A \\
A \to B & B \to B & C \to B
\end{bmatrix}$$

$$J_{C_{A}}(+A)$$

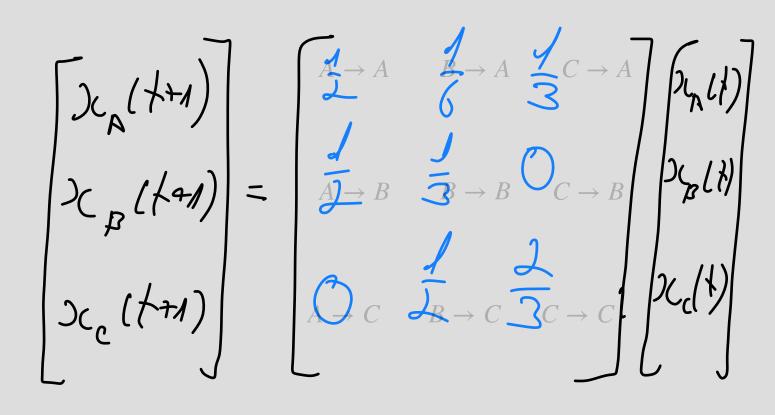
$$J_{C_{C_{C_{A}}}(+A)$$

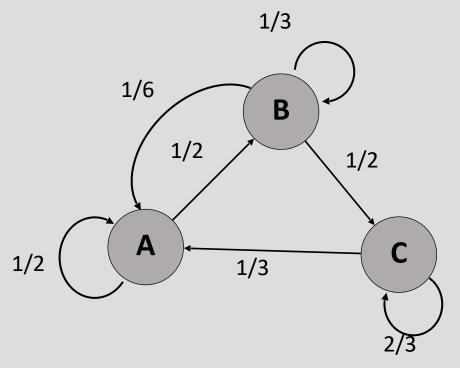
$$A \to C & B \to C & C \to C$$

$$J_{C_{C_{C_{A}}}(+A)$$



Exercise:





Example 2:

$$\begin{bmatrix}
\lambda_{A}(+1) \\
\lambda_{C}(+1)
\end{bmatrix} = \begin{bmatrix}
A \to A & B \to A & C \to A \\
A \to B & B \to B & C \to B
\end{bmatrix}$$

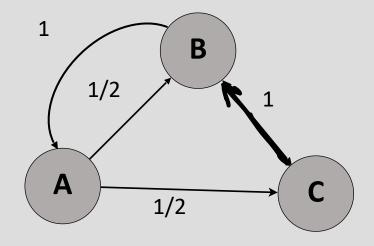
$$\lambda_{C}(+1)$$

$$\lambda_{C}(+1)$$

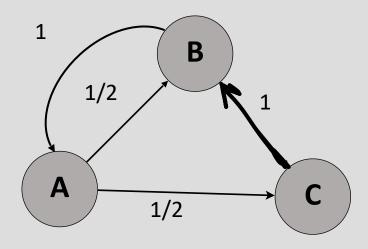
$$\lambda_{C}(+1)$$

$$\lambda_{C}(+1)$$

$$\lambda_{C}(+1)$$



Example 2:

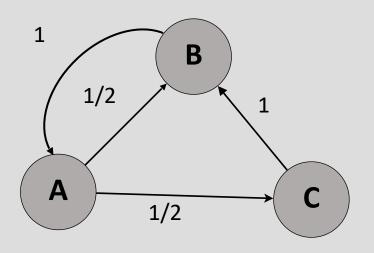


$$\begin{bmatrix}
\lambda_{L}(1+1) \\
\lambda_{L}(1+1)
\end{bmatrix} = \begin{bmatrix}
\lambda_{L}(1+1) \\
\lambda_{L}(1+1)
\end{bmatrix} = \begin{bmatrix}
\lambda_{L}(1+1) \\
\lambda_{L}(1+1)
\end{bmatrix}$$

$$\begin{bmatrix}
\lambda_{L}(1+1) \\
\lambda_{L}(1+1)
\end{bmatrix} = \begin{bmatrix}
\lambda_{L}(1+1) \\
\lambda_{L}(1+1)
\end{bmatrix}$$

$$\begin{bmatrix}
\lambda_{L}(1+1) \\
\lambda_{L}(1+1)
\end{bmatrix} = \begin{bmatrix}
\lambda_{L}(1+1) \\
\lambda_{L}(1+1)
\end{bmatrix}$$

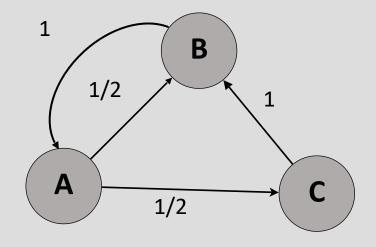
$$\begin{bmatrix}
\lambda_{L}(1+1) \\
\lambda_{L}(1+1)
\end{bmatrix}$$

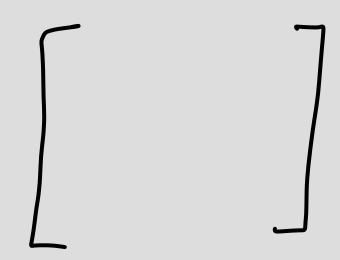


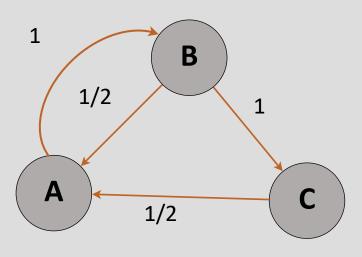
$$\begin{aligned}
\int_{C_{R}} (+1) &= \begin{cases}
\lambda_{A} &= 0 \\
\lambda_{A} &= 0
\end{aligned}$$

$$\int_{C_{R}} (+1) &= \lambda_{A} &= 0$$

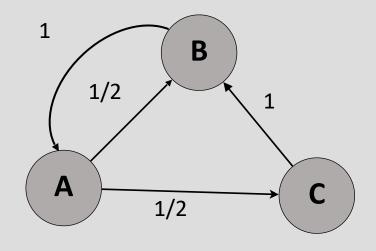
$$\int_{C_{R}} ($$

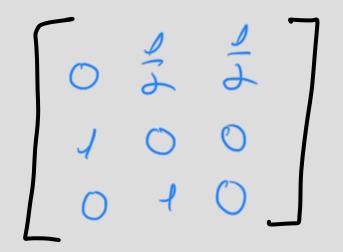


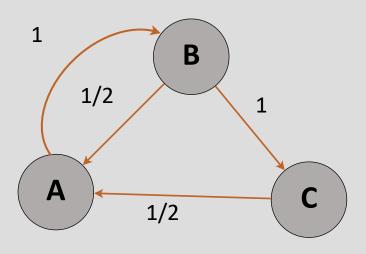


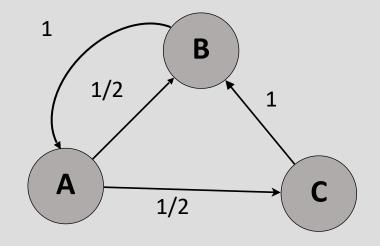


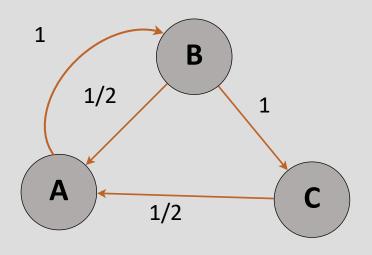
$$\begin{aligned}
\int_{C_{R}}(+4) &= \int_{A_{2}} &= \int_{B} &= \int_{B} &= \int_{A_{2}} &= \int_{B} &= \int_{A_{2}} &= \int_{B} &= \int_{A_{2}} &= \int_{A_{2}} &= \int_{B} &= \int_{A_{2}} &= \int_{A_{2}} &= \int_{B} &= \int_{A_{2}} &= \int_{A_{2}} &= \int_{A_{2}} &= \int_{B} &= \int_{A_{2}} &= \int_{A_{2}}$$

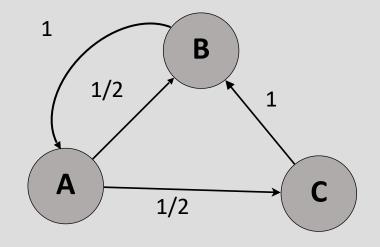


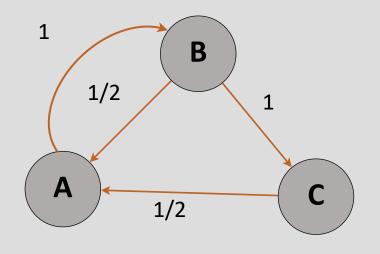












A) In general, no!

Matrix Transpose

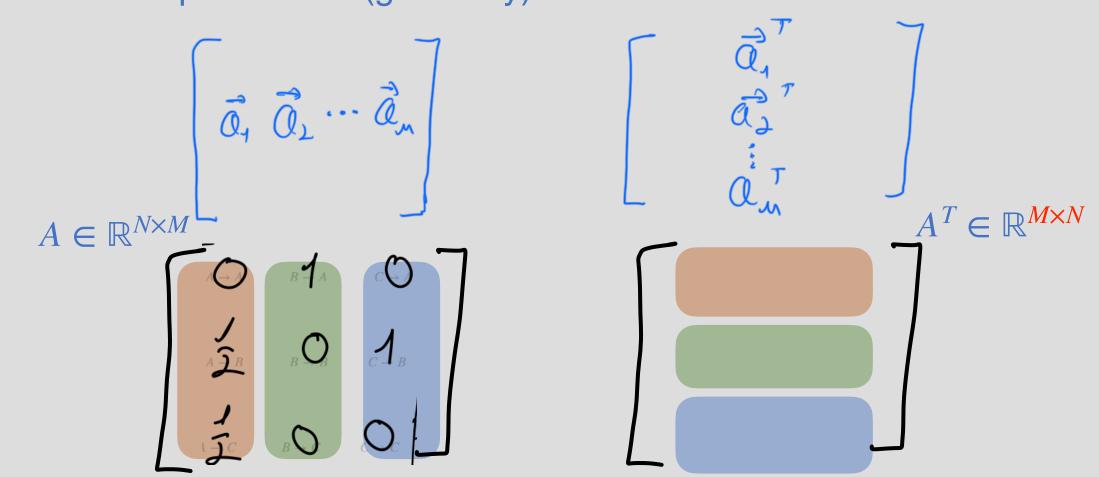
If the elements of the matrix $A \in \mathbb{R}^{N \times M}$ are a_{ij} . The elements of $A^T \in \mathbb{R}^{M \times N}$ are a_{ji} . Matrix transpose is not (generally) an inverse!

$$A \in \mathbb{R}^{N \times M} \qquad \qquad \qquad \begin{bmatrix} \vec{Q}_{1} & \cdots & \vec{Q}_{M} \\ \vec{Q}_{2} & \cdots & \vec{Q}_{M} \\ \vdots & \ddots & \vdots \\ \vec{Q}_{M} & \cdots & \vec{Q}_{M} \end{bmatrix}$$

$$A \in \mathbb{R}^{N \times M} \qquad \qquad A^{T} \in \mathbb{R}^{M \times N}$$

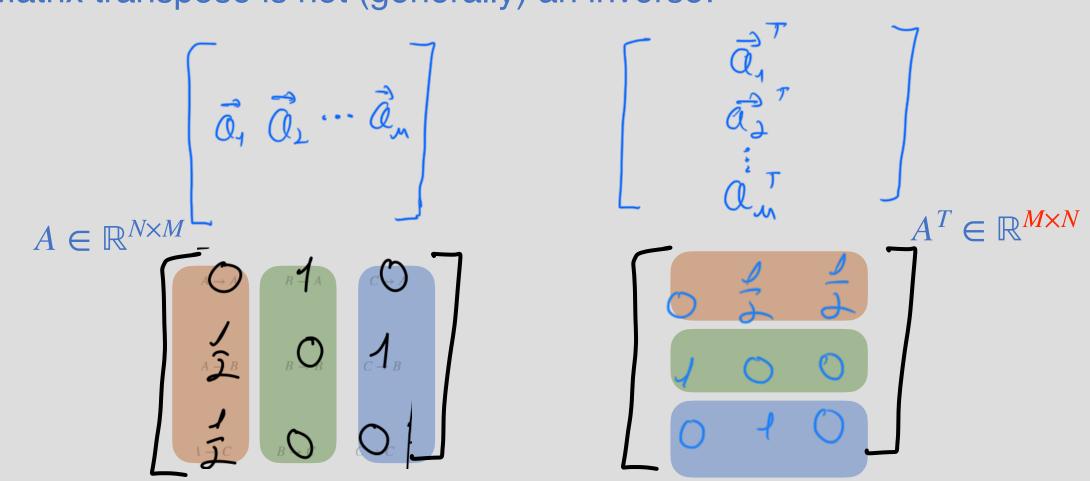
Matrix Transpose

If the elements of the matrix $A \in \mathbb{R}^{N \times M}$ are a_{ij} . The elements of $A^T \in \mathbb{R}^{M \times N}$ are a_{ji} . Matrix transpose is not (generally) an inverse!

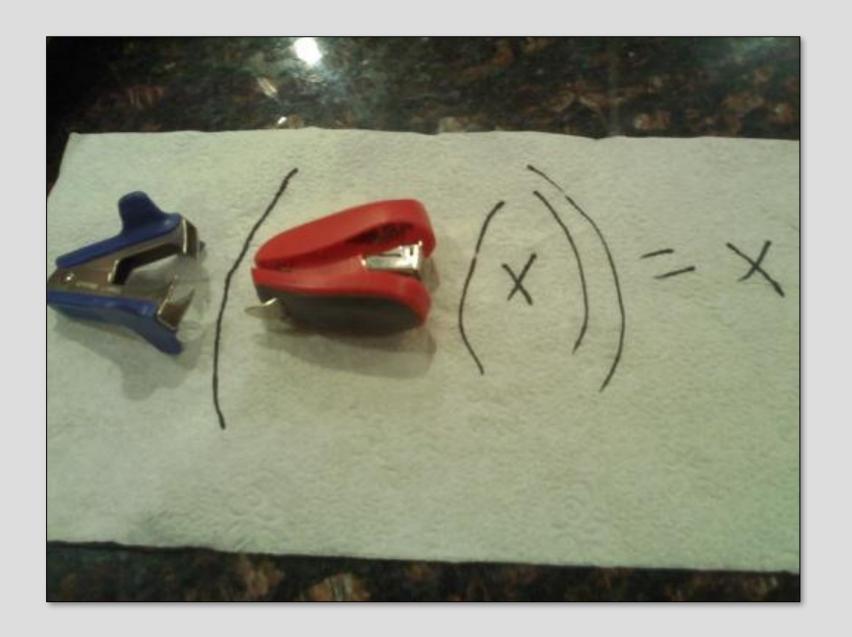


Matrix Transpose

If the elements of the matrix $A \in \mathbb{R}^{N \times M}$ are a_{ij} . The elements of $A^T \in \mathbb{R}^{M \times N}$ are a_{ji} . Matrix transpose is not (generally) an inverse!



Matrix Inversion



Matrix Inverse

$$\overrightarrow{x}(t+1) = Q\overrightarrow{x}(t)$$

Is there a square matrix P such that we can go back in time?

$$\overrightarrow{x}(t) = P\overrightarrow{x}(t+1)$$

Yes, if : PQ = I

As consequence : QP = I

$$\overrightarrow{Px}(t+1) = \overrightarrow{PQx}(t) \qquad \overrightarrow{x}(t+1) = \overrightarrow{Qx}(t)
\overrightarrow{Px}(t+1) = \overrightarrow{Ix}(t) \qquad \overrightarrow{x}(t+1) = \overrightarrow{QPx}(t+1)
\overrightarrow{x}(t+1) = \overrightarrow{Ix}(t+1) = \overrightarrow{Ix}(t+1)$$

Matrix Inverse - Formal definition

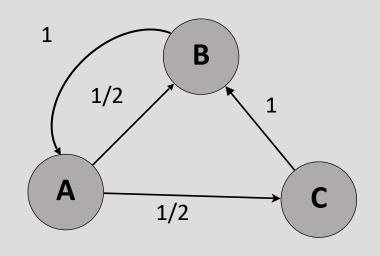
- Definition: Let $P,Q \in \mathbb{R}^{N \times N}$ be square matrices.
 - P is the inverse of Q if PQ = QP = I

We say that
$$P = Q^{-1}$$
 and $Q = P^{-1}$

Q: What about non-square matrices?

A: EECS16B!

Computing the Matrix Inverse



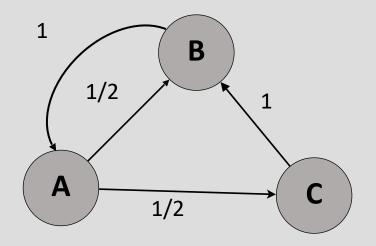
- Want $P = Q^{-1}$ such that $\overrightarrow{x}(t) = P\overrightarrow{x}(t+1)$
 - Need: QP = I

Computing the Matrix Inverse

Need: QP = I

Pose as a linear set of equations.

Solve with Gaussian Elimination

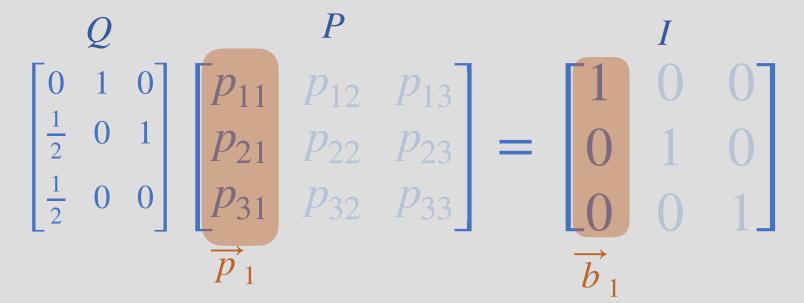


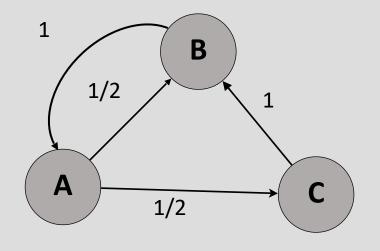
Computing the Matrix Inverse

Need: QP = I

Pose as a linear set of equations.

Solve with Gaussian Elimination



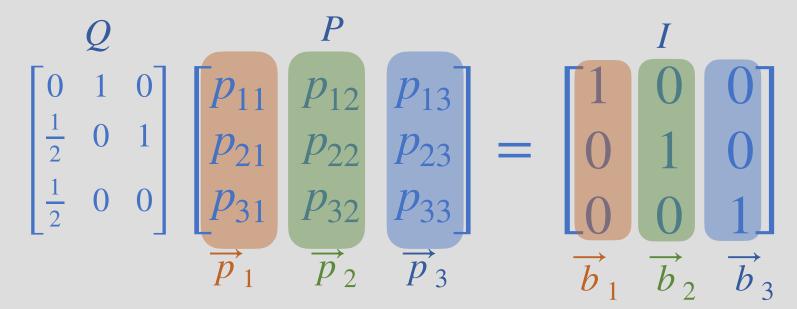


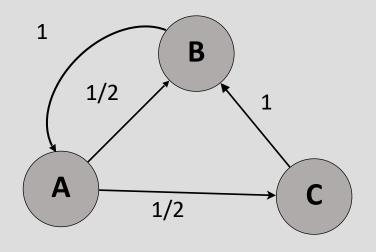
Computing the Matrix Inverse

Need: QP = I

Pose as a linear set of equations.

Solve with Gaussian Elimination





Matrix Inverse via Gaussian Elimination

$$\begin{bmatrix} \frac{1}{2} & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

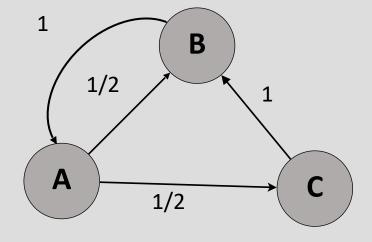
$$\begin{bmatrix} 1 & 0 & 2 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 & -2 & 2 \end{bmatrix}$$

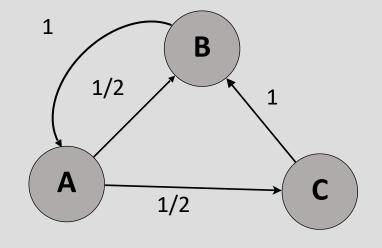
$$\begin{bmatrix} 1 & 0 & 2 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & -1 \end{bmatrix}$$

Let's check

$$\begin{bmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 10 \\ 2 \end{bmatrix}$$



Let's check



$$\begin{bmatrix} 4 \\ 6 \\ 8 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

And now we can take any number of steps backwards!

Can we always invert a function?

- Can we always invert a function $....f^{-1}(f(\overrightarrow{x})) = \overrightarrow{x}$?
 - $f(x) = x^2$?
 - -f(x) = ax?
 - -f(x) = Ax?

Invertibility of Linear Transformations

- Theorem: A is invertible, if and only if (iff) the columns of A are linearly independent.
 - 1. If columns of A are lin. dep. then A^{-1} does not exist
 - 2. If A^{-1} exists, then the cols. of A are linearly independent

Proof concept: Assume linear dependence and invertibility and show that it is a contradiction

From linear independence: $\exists \overrightarrow{\alpha} \neq 0$ such that $A\overrightarrow{\alpha} = 0$

Assume
$$A^{-1}$$
 exists $A^{-1}A\overrightarrow{\alpha}=0$
$$I\overrightarrow{\alpha}=0$$
 But $\overrightarrow{\alpha}\neq 0$! Hence A^{-1} does not exist

Inverse of a 2x2 matrix

$$A = \begin{bmatrix} a & b \\ C & d \end{bmatrix}$$
 1.Flip a and d
2.Negate b and c
3.Divide by $ad - bc$

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Derive via Gauss Elimination!

Equivalent Statements

- Matrix A is invertible
- $\bullet A\overrightarrow{x} = \overrightarrow{b}$ has a unique solution
- $\bullet A$ has linearly independent columns (A is full rank)
- •A has a trivial nullspace
- ullet The determinant of A is not zero

Today (and next time's) Jargon

- Rank a matrix A is the number of linearly independent columns
- Nullspace of a matrix A is the set of solutions to $A\overrightarrow{x} = 0$
- A **vector space** is a set of vectors connected by two operators (+,x)
- A vector **subspace** is a subset of vectors that have "nice properties"
- A basis for a vector space is a minimum set of vectors needed to represent all vectors in the space
- Dimension of a vector space is the number of basis vectors
- Column space is the span (range) of the columns of a matrix
- Row space is the span of the rows of a matrix

ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA

M Uecker, P Lai, MJ Murphy, P Virtue, M Elad, JM Pauly, SS Vasanawala, ... Magnetic resonance in medicine 71 (3), 990-1001

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142121/

- Basis 3 times
- Rank 4 times
- Row space 4 times
- Columns (of a matrix) 6 times
- Subspace 17 times
- Null Space 29 times
- Eigen 87 times

Vector Space

From Merriam Webster:

Definition of vector space

a set of vectors along with operations of addition and multiplication such that the set is a commutative group under addition, it includes a multiplicative inverse, and multiplication by scalars is both associative and distributive

Vector Space

• A vector space, is a set of vectors and scalars ($\mathbb{V} \in \mathbb{R}^N$, $\mathbb{F} \in \mathbb{R}$) and two operators \cdot , + that satisfy the following:

Axioms of closure

1.
$$\alpha \overrightarrow{x} \in \mathbb{V}$$

2.
$$\overrightarrow{x} + \overrightarrow{y} \in \mathbb{V}$$

3.
$$\overrightarrow{x} + (\overrightarrow{y} + \overrightarrow{z}) = (\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z}$$
 (associativity)

Axioms of addition

(+)

4.
$$\overrightarrow{x} + \overrightarrow{y} = \overrightarrow{y} + \overrightarrow{x}$$
 (commutativity)

5.
$$\exists \overrightarrow{0} \in \mathbb{V}$$
 s.t. $\overrightarrow{x} + \overrightarrow{0} = \overrightarrow{x}$ (additive identity)

6.
$$\exists (-\overrightarrow{x}) \in \mathbb{V}$$
 s.t. $\overrightarrow{x} + (-\overrightarrow{x}) = \overrightarrow{0}$ (additive inverse)

7.
$$\alpha(\overrightarrow{x} + \overrightarrow{y}) = \alpha \overrightarrow{x} + \alpha \overrightarrow{y}$$
 (distributivity)

Axioms of scaling (\cdot)

8.
$$\alpha \cdot (\beta \overrightarrow{x}) = (\alpha \beta) \cdot \overrightarrow{x}$$

9.
$$(\alpha + \beta)\overrightarrow{x} = \alpha \overrightarrow{x} + \beta \overrightarrow{x}$$

10.
$$1 \cdot \overrightarrow{x} = \overrightarrow{x}$$

Vector Space

- A vector space V is a set of vectors and two operators \cdot , + that satisfy the following:
 - 1. $\alpha \overrightarrow{x} \in \mathbb{V}$
 - 2. $\overrightarrow{x} + \overrightarrow{y} \in \mathbb{V}$
 - 3. $\overrightarrow{x} + (\overrightarrow{y} + \overrightarrow{z}) = (\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z}$ (associativity)
 - 4. $\overrightarrow{x} + \overrightarrow{y} = \overrightarrow{y} + \overrightarrow{x}$ (commutativity)
 - 5. $\exists \overrightarrow{0} \in \mathbb{V}$ s.t. $\overrightarrow{x} + \overrightarrow{0} = \overrightarrow{x}$ (additive identity)
 - 6. $\exists (-\overrightarrow{x}) \in \mathbb{V}$ s.t. $\overrightarrow{x} + (-\overrightarrow{x}) = \overrightarrow{0}$
 - 7. $\alpha(\overrightarrow{x} + \overrightarrow{y}) = \alpha \overrightarrow{x} + \alpha \overrightarrow{y}$ (distributivity)
 - 8. $\alpha \cdot (\beta \overrightarrow{x}) = (\alpha \beta) \cdot \overrightarrow{x}$
 - 9. $(\alpha + \beta)\overrightarrow{x} = \alpha \overrightarrow{x} + \beta \overrightarrow{x}$
 - 10. $1 \cdot \overrightarrow{x} = \overrightarrow{x}$

Is \mathbb{R}^2 a vector space?

Is
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$
?

Is
$$\alpha \in \mathbb{R}$$
, $\alpha \geq 0$?

Is
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
?

Subspaces

- A subspace \mathbb{U} consists of a subset of \mathbb{V} in vector space $(\mathbb{V}, \mathbb{F}, +, \cdot)$
 - $\mathbb{U} \subset \mathbb{V}$ and have 3 properties
 - 1. Contains $\overrightarrow{0}$, i.e., $\overrightarrow{0} \in \mathbb{U}$
 - 2. Closed under vector addition: \overrightarrow{v}_1 , $\overrightarrow{v}_2 \in \mathbb{U}$, $\Rightarrow \overrightarrow{v}_1 + \overrightarrow{v}_2 \in \mathbb{U}$
 - 3. Closed under scalar multiplication: $\overrightarrow{v}_1 \in \mathbb{U}$, $\alpha \in \mathbb{F}$, $\Rightarrow \alpha \overrightarrow{v} \in \mathbb{U}$