Welcome to EECS 16A!
Designing Information Devices and Systems I

Ana Claudia Arias and Miki Lustig
Fall 2022

Module 2
Lecture 9
Capacitance Modeling and Comparator
(Note 18)
We want to measure capacitance here.

\[C_0 \]

\[\frac{C_1 C_2}{C_1 + C_2} = C_A \quad \text{(change)} \]

This capacitor goes away with no touch.

Problem: We don't have a capacitor!

We will try ideas to get to a final model.
Measuring Capacitance Models – Attempt #1

If there is touch: \(V_c = V_s \)
If there is no touch: \(V_c = V_s \)
\(V_{out} \) does not change!
Need a better idea...

Assume \(C_{eq} \) starts out discharged
\(V_{out}(t=0) = 0 \)
\(I_s = C_{eq} \frac{dV_{out}(t)}{dt} \rightarrow V_{out}(t) = \int \frac{I_s}{C_{eq}} dt \)

\(V_{out} = \frac{I_s \cdot t}{C_{eq}} \rightarrow C_{eq} = \frac{I_s \cdot t}{V_{out}} \)

We will learn how to design current sources in EE140.
Measuring Capacitance Models – Attempt #2 – add switches and a reference capacitor

We want to charge C_{ref} and measure V_{out} as C_{ref} discharges.

Phase 1

Close S_1, Open S_2
C_{eq} charges
$q = C_{eq} \cdot V_s$
(charge accumulates on capacitor plates)

If S_1 and S_2 are both closed – we have attempt #1
Measuring Capacitance Models – Attempt #2 – add switches and a reference capacitor

Phase 2

1. Close S2; Open S1.
2. There is a path for charge to move.
3. C_{eq} provides the energy needed for current.

Charge will be shared between C_{eq} and C_{ref}: charge sharing.

Very close!
But... we don't know the initial value of C_{ref}.
Measuring Capacitance Models – Attempt #3 – known initial condition

Use S_3 to discharge C_{ref} so we know $C_{ref} = 0$

- **Phase 1**
 - S_1 closed, S_2 open, S_3 closed
 - C_{ref} discharges $V_{out} \rightarrow 0$
 - $q = C_{eq} \cdot V_{out} = 0$
 - $V_{out} = 0$

- **Phase 2**
 - S_1 open, S_2 closed, S_3 open
 - C_{eq} charged
 - C_{ref} discharged

$q = C_{eq} \cdot V_s$
Measuring Capacitance Models – Attempt #3 – known initial condition

Voltage across C_{eq}: V_{out}
Voltage across C_{ref}: V_{out}
Charge in C_{eq}: $q_1 = C_{eq} \cdot V_{out}$
Charge in C_{ref}: $q_2 = C_{ref} \cdot V_{out}$

Total charge is conserved!

$q_{(\text{phase1})} = q_{(\text{phase2})}$

$C_{eq} \cdot V_s = C_{eq} \cdot V_{out} + C_{ref} \cdot V_{out}$

$V_{out} = \frac{C_{eq} \cdot V_s}{C_{eq} + C_{ref}} \implies V_{out}$ changes when C_{eq} changes!
Effect of touch on total capacitance

When no touch:
\[V_{OUT} = \frac{C_0}{C_0 + C_{res}} \cdot V_S \]

With touch:
\[V_{OUT} = \frac{(C_0 + C_\Delta)}{C_0 + C_\Delta + C_{res}} \cdot V_S \]
How can we go from voltage measurement to binary answer: touch or no touch?

- We need to choose a Voltage that we call: Threshold Voltage (V_{th})
- Above V_{th} : 1 (touch)
- Below V_{th} : 0 (no-touch)

We need to compare Voltages to determine if 1 or 0.
How can we go from voltage measurement to binary answer: touch or no touch?

• New tools are needed – new circuit elements
An example of an Op-amp circuit diagram

Schematic diagram of a model 741 op-amp.
Operational Amplifier

An op-amp (operational amplifier) is a device that transforms a small voltage difference into a very large voltage difference.

An op-amp has two input terminals marked (+) and (−) with potentials U_+ and U_-, two power supply terminals called VDD and VSS, and one output terminal with potential U_{out}.

$V_d = U_+ - U_-$

The output voltage V_{out} is given by:

$$V_{out} = V_{SS} + \frac{V_{DD} - V_{SS} + A \cdot V_d}{2}$$

when

$$V_{SS} \leq \frac{V_{DD} - V_{SS} + A \cdot V_d}{2} \leq V_{DD}$$
Operational Amplifier

An op-amp (operational amplifier) is a device that transforms a small voltage difference into a very large voltage difference.

An op-amp has two input terminals marked (+) and (−) with potentials U_+ and U_-, two power supply terminals called V_{DD} and V_{SS}, and one output terminal with potential U_{out}.

\[
\frac{V_{DD} - V_{SS}}{2} + AV_+ \quad V^*
\]

\[
V_{out} = V_{DD} \quad \text{if} \quad V^* > V_{DD}
\]

\[
V_{out} = V_{SS} \quad \text{if} \quad V^* < V_{SS}
\]

Can be used to compare Voltage
Comparator – optimized for binary output

V_{DD} can be much higher than V_{SS}, it amplifies the signal.
Comparator – optimized for binary output

Also optimized for speed

\[
\begin{align*}
\text{if} & : \ V_c(+) > V_{\text{th}} \\
V_{\text{out}} & = V_{DD} \\
\text{if} & : \ V_c(+) \leq V_{\text{th}} \\
V_{\text{out}} & = V_{SS}
\end{align*}
\]
Back to our Capacitive Touchscreen

\[C_{eq} \Rightarrow C_0 + C_A \quad \text{touch} \]
\[C_0 \quad \text{no touch} \]
\[V_{touch} \quad \text{touch} \]

\[\text{Should be halfway between } V_{touch} \text{ and } V_{no-touch} \]