
EECS 16A Designing Information Devices and Systems I
Fall 2021 Lecture Notes Note 25

25.1 Trilateration
Recall that GPS works by receiving signals from many satellites, computing the time delay t of each signal,
and using these time delays to determine the receiver’s location.

In the previous note, we saw how to use correlation to compute these time delays. Now, we will see how to
use these time delays to determine the actual position of our receiver, in a process known as trilateration.

25.2 Computing distances from time delays
Imagine that each of the beacons start broadcasting their signal at time t = 0. Assume also that our receiver
starts recording at this same time t = 0. Since our signals travel at a finite velocity v (such as the speed of
light for radio waves, or the speed of sound for audio signals), it will take some time for each signal to reach
our receiver. Specifically, if beacon i is at some distance di from our receiver, then it will take time di/v to
reach the receiver, so the time delay becomes

ti =
di

v
.

Thus, we can rearrange the above to compute all the distances as di = vti.

25.3 Determining our location
Let’s imagine we have a situation like the one below. We know the locations of the beacons ~a0,~a1,~a2, but
don’t know the location of the point at~x. Our goal will be to solve for~x, given the distances d0,d1,d2.

~a0 ~a1

~a2

~x

d0

d1

d2

EECS 16A, Fall 2021, Note 25 1



By the Pythagorean theorem, we have that

‖~a0−~x‖2 = d2
0

‖~a1−~x‖2 = d2
1

‖~a2−~x‖2 = d2
2 .

We wish to solve for ~x. It is natural to rewrite the squared norms using inner products and expand out the
squared binomial terms, in order to separate out the terms involving~x from the terms that are known.

Doing so, we obtain

~aT
0~a0−2~aT

0~x+~xT~x = d2
0

~aT
1~a1−2~aT

1~x+~xT~x = d2
1

~aT
2~a2−2~aT

2~x+~xT~x = d2
2 .

We’re interested in solving for~x. If the above system were a linear system, then we could do so easily, using
Gaussian elimination. Unfortunately, the ~xT~x quadratic term prevents us from doing so. To eliminate that
terms, we use a “trick” - we will subtract the first of our equations from each of the other two. In doing so,
the~xT~x term will subtract out, leaving us with a linear system!

Doing so, we obtain the two equations:

~aT
1~a1−~aT

0~a0−2~aT
1~x+2~aT

0~x = d2
1 −d2

0

~aT
2~a2−~aT

0~a0−2~aT
2~x+2~aT

0~x = d2
2 −d2

0 .

Simplifying and collecting terms within each equation, we can rewrite the above system as[
2(~aT

0 −~aT
1 )

2(~aT
0 −~aT

2 )

]
~x =

[
~aT

1~a1−~aT
0~a0 +d2

0 −d2
1

~aT
2~a2−~aT

0~a0 +d2
0 −d2

2

]
.

Now, we have two linear equations. So if we are working in two dimensions, we can solve for the compo-
nents of ~x and recover our position. If we are working in three dimensions, however, then we do not have
enough equations - we would need to add one more beacon~a3 in order to get our third linear equation. More
generally, if we are working in n-dimensional space, we need at least n+ 1 beacons in order to determine
our position, since we “lose” one beacon in our subtraction trick in order to linearize the system.

25.4 Unsynchronized Clocks
However, there is one critical assumption baked into the above approach. How do we find the ti? We assume
that our receiver starts recording at the same time t = 0 that the beacons start broadcasting. Then we use
cross-correlation to compute each ti, and then solve for di and do trilateration as described above.

But how does our receiver know to start recording at exactly that time t = 0? It must have some clock that
is synchronized with the beacons, in order to know when to begin recording. In reality, however, such a
clock does not exist - while the beacons can all be synchronized to start broadcasting at the same time, the

EECS 16A, Fall 2021, Note 25 2



receiver cannot guarantee that it starts recording at exactly that same time. Instead, it begins recording at
some time ∆t, representing the offset from t = 0 when we start recording. Note that ∆t may be either positive
or negative, but is unknown to the receiver.

Consider the following figure, representing the signals broadcast by the beacons and received by the receiver:

Signal broadcast

Signal at receiver

di/v

Notice that the received signal is delayed by some amount, due to its travel time. As we discussed earlier,
letting di be the distance between the receiver and the beacon, this delay will equal di/v.

If the receiver were able to synchronize its recording with the time at which the signal was broadcast, then
we could use cross correlation to compute the above delay, recover di, and perform trilateration in manner
described above. However, what if we were unable to start our recording at exactly t = 0, but instead started
at some unknown time t = ∆t?

Signal broadcast

Signal at receiver

∆t ti

di/v

As shown above, the recording begins only after some time ∆t. When we perform cross-correlation, we
determine that the signal has been delayed by some time ti after we began recording. But as shown in the
above diagram, the signal has in fact been traveling for a time ti +∆t, not simply ti.

So we may write our observations ti

t0 =
d0

v
−∆t

t1 =
d1

v
−∆t

...

tn−1 =
dn−1

v
−∆t.

EECS 16A, Fall 2021, Note 25 3



So what do we do now? Since ∆t is unknown, we can’t recover the di directly and use our previous approach
to solve for our position. Instead, we can rearrange and write the di in terms of both ti (which are known)
and ∆t (which is not!):

d0 = v(∆t + t0)

d1 = v(∆t + t1)
...

dn−1 = v(∆t + tn−1).

Observe that this system of equations looks very similar to the system in the previous section, except in the
previous system of equations ∆t = 0. This makes sense, since in our previous setup we were told that the
receiver began recording at time 0, whereas now all we know is that it starts recording at some unknown
time ∆t. Thus, we see from these equations that the time taken for the ith signal to travel from the beacon to
the receiver, known as the “time of flight,” is ∆t + ti.

Note that since all the beacons are still synchronized, they all broadcast together at the same time, so we
only have one unknown ∆t, not n of them.

Unfortunately, since we don’t know ∆t, we can’t use the same approach that we did earlier. Ideally, we’d
like to eliminate ∆t from our equations, so that the distances are the only remaining unknowns. One natural
way of doing this is to subtract the first equation from all the rest, to obtain:

d1−d0 = v(t1− t0)

d2−d0 = v(t2− t0)
...

dn−1−d0 = v(tn−1− t0).

For convenience, we will define the “time difference of arrival”, or TDOA, of each beacon i to be τi = ti− t0.
Observe that while we cannot directly measure the time of flight’ ti − ∆t since ∆t is unknown, we can
measure these time differences of arrival, as all the ti are known.

Observe that d0 occurs many times in the above system of equations. To make future calculations simpler,
we will choose our origin to be the position of the 0th beacon and place the receiver at the position~x in this
coordinate system, so

d2
0 =~xT~x.

As before, we let the coordinates of the ith beacon be~ai, with~a0 =~0.

Substituting in the distances computed using the Pythagorean theorem, we obtain the equations√
(~x−~a1)T (~x−~a1)−

√
~xT~x = vτ1√

(~x−~a2)T (~x−~a2)−
√
~xT~x = vτ2

...√
(~x−~an−1)T (~x−~an−1)−

√
~xT~x = vτn−1.

How can we solve these equations? The square roots certainly aren’t helpful, so let’s see if we can get rid of

EECS 16A, Fall 2021, Note 25 4



them. Squaring each equation would remove some square roots, but then we’d get a cross term caused by
the product of the two terms on the left hand side, which looks difficult to deal with. Instead, let’s pull one
square root to the other side, so that when we then square, we won’t get as ugly a cross term.

Rearranging in such a manner, we obtain√
(~x−~a1)T (~x−~a1) = vτ1 +

√
~xT~x√

(~x−~a2)T (~x−~a2) = vτ2 +
√
~xT~x

...√
(~x−~an−1)T (~x−~an−1)2 = vτn−1 +

√
~xT~x.

And now squaring, we obtain

(~x−~a1)
T (~x−~a1) = (vτ1)

2 +~xT~x+2vτ1
√
~xT~x

(~x−~a2)
T (~x−~a2) = (vτ2)

2 +~xT~x+2vτ2
√
~xT~x

...

(~x−~an−1)
T (~x−~an−1) = (vτn−1)

2 +~xT~x+2vτn−1
√
~xT~x

Does this look any better? Ideally, we’d get a linear equation, which we could then solve using Gaussian
elimination or least squares, depending on the number of beacons. But there are still terms of the form~xT~x
and 2

√
~xT~x that keep this system nonlinear. Can we get rid of these terms?

The first thing to observe is that, by expanding out the left-hand-side, we get a~xT~x term, which cancels with
the right hand side. Awesome! Performing this expansion, we obtain

~xT~x−2~aT
1~x+~aT

1~a1 = (vτ1)
2 +~xT~x+2vτ1

√
~xT~x

~xT~x−2~aT
2~x+~aT

2~a2 = (vτ2)
2 +~xT~x+2vτ2

√
~xT~x

...

~xT~x−2~aT
n−1~x+~aT

n−1~an−1 = (vτn−1)
2 +~xT~x+2vτn−1

√
~xT~x.

And canceling, we then obtain

−2~aT
1~x+~aT

1~a1 = (vτ1)
2 +2vτ1

√
~xT~x

−2~aT
2~x+~aT

2~a2 = (vτ2)
2 +2vτ2

√
~xT~x

...

−2~aT
n−1~x+~aT

n−1~an−1 = (vτn−1)
2 +2vτn−1

√
~xT~x.

Is this system of equations linear? Recall that the ~ai are constants (since their values are known), so the
presence of~aT

i ~ai terms does not make the system nonlinear, since they are also just constant terms.

However, the 2
√
~xT~x term is a nonlinear term, since ~x is an unknown. So our system isn’t linear just yet.

To get rid of this term, we could try to use the same “trick” we used in the previous section, where we

EECS 16A, Fall 2021, Note 25 5



subtracted equation 1 from all the other equations to get rid of the ~xT~x term. Unfortunately, here there are
multiplicative coefficients in front of the 2

√
~xT~x term, so we can’t directly subtract it out. Instead, we need

to first scale each equation in order to get rid of the constant, and then do the subtraction trick.

Dividing each equation by vτi to get rid of the constant in front of 2
√
~xT~x, we obtain the system

~aT
1~a1−2~aT

1~x
vτ1

= vτ1 +2
√
~xT~x

~aT
2~a2−2~aT

2~x
vτ2

= vτ2 +2
√
~xT~x

...

~aT
n−1~an−1−2~aT

n−1~x
vτn−1

= vτn−1 +2
√
~xT~x.

Now, we can subtract the first equation from each of the others individually, to obtain

~aT
2~a2−2~aT

2~x
vτ2

−~aT
1~a1−2~aT

1~x
vτ1

= vτ2− vτ1

~aT
3~a3−2~aT

3~x
vτ3

−~aT
1~a1−2~aT

1~x
vτ1

= vτ3− vτ1

...

~aT
n−1~an−1−2~aT

n−1~x
vτn−1

−~aT
1~a1−2~aT

1~x
vτ1

= vτn−1− vτ1.

Whew! That was a lot of messy algebra there at the end. But have we ended up with a linear system of
equations? Well, notice that the only “quadratic” terms remaining are of the form ~aT

i ~ai. But since all the ~ai

are known to us, these are just constant terms. The only terms involving the unknown~x are linear terms, so
we have indeed obtained a linear system of equations!

Let’s rewrite our equations in a more familiar form, collecting the constant terms on the right hand side, and
stacking everything into a matrix-vector system:


2~aT

1 /(vτ1)−2~aT
2 /(vτ2)

2~aT
1 /(vτ1)−2~aT

3 /(vτ3)
...

2~aT
1 /(vτ1)−2~aT

n−1/(vτn−1)

~x =


vτ2− vτ1 +
~aT

1~a1
vτ1
− ~aT

2~a2
vτ2

vτ3− vτ1 +
~aT

1~a1
vτ1
− ~aT

3~a3
vτ3

...

vτn−1− vτ1 +
~aT

1~a1
vτ1
− ~aT

n−1~an−1
vτn−1

 .

Now, we have made the linear structure of our system of equations entirely explicit. Observe that we end
up with n−2 equations and a single unknown vector~x. Let x be in d-dimensional space. Thus, we need at
least n ≥ d + 2 beacons to determine our location when our clocks are not synchronized with those of the
beacons - one more than we did in the case of synchronized clocks.

Intuitively, this can be justified by recognizing that we really have one more unknown - the offset ∆t - so
we clearly need at least d +1 beacons. The fourth and last equation is needed to “linearize” our system by

EECS 16A, Fall 2021, Note 25 6



subtracting out the quadratic terms. Of course, having more equations doesn’t hurt. If we have more than
four equations, then we end up with an overdetermined system, which can still be solved using least squares.

EECS 16A, Fall 2021, Note 25 7


