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EECS 16A
Fall 2020 Some of the Proofs We Have Covered So Far

1. Note 3 | 3.1.1
Prove the following two definitions of Linear Dependence are equivalent:

Definition 3.1: A set of vectors {~v1, ...,~vn} is linearly dependent if there exist scalars α1, ...,αn such that
α1~v1 + ...+αn~vn = 0 and not all αi’s are equal to zero.

Definition 3.2: A set of vectors {~v1, ...,~vn} is linearly dependent if there exist scalars α1, ...,αn and an
index i such that ~vi = ∑ j 6=i α j~v j. In words, a set of vectors is linearly dependent if one of the vectors could
be written as a linear combination of the rest of the vectors.

2. Note 3 | 3.1.3
Prove the following theorem:

Theorem 3.1: If the system of linear equations A~x=~b has an infinite number of solutions, then the columns
of A are linearly dependent.

3. Note 4 | Example 4.1 (Example of Constructive Proof)

Prove that span
{[

1
1

]
,

[
1
−1

]}
= R2

4. Note 4 | Example 4.2 (Example of Proof By Contradiction)
Prove the following theorem by contradiction:

Theorem 4.1: If the columns of A in the system of linear equations A~x =~b are linearly dependent, then the
system does not have a unique solution.

5. Note 4 | Example 4.3
Let {~v1,~v2, ...,~vn} be a set of linearly dependent vectors in Rn. Take any matrix A ∈ Rm×n. Prove that the
set of vectors {A~v1,A~v2, ...,A~vn} is linearly dependent.

6. Note 4 | Example 4.4 (Example of Direct Proof)
Assume that vectors ~v1, ~v2 and ~v1 +~v2 are all solutions to the system of linear equations A~x =~b. Prove that
~b must be the zero vector.

7. Discussion 3A | Q1
Given some set of vectors {~v1,~v2, ...~vn}, show the following:

(a) span {~v1,~v2, ...~vn} = span{α~v1,~v2, ...~vn}, where α is a non-zero scalar. In other words, we can scale
our spanning vectors and not change their span.

(b) span {~v1,~v2, ...~vn} = span{~v1 + ~v2,~v2, ...~vn}. In other words, we can replace one vector with the sum
of itself and another vector and not change their span.

8. Discussion 3A | Q2 Part 3
The distributivity property of matrix-vector multiplication holds for any vectors and matrices. Show for
general A ∈ R2×2 and ~v1,~v2 ∈ R2 that A(~v1 +~v2) = A~v1 +A~v2.
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9. Note 6 | 6.1.1

Prove the following theorems:

(a) Theorem 6.1: If A is an invertible matrix, then its inverse must be unique.

(b) Theorem 6.2: If QP = I and RQ = I, then P = R. The matrix P can be thought of as the “right”
inverse of Q and the matrix R can be thought of as the “left” inverse of Q.

10. Note 6 | 6.2

Prove the following theorems:

(a) Theorem 6.3: If a matrix A is invertible, there exists a unique solution to the equation A~x =~b for all
possible vectors~b.

(b) Theorem 6.4: If a matrix A is invertible, its columns are linearly independent.

11. Homework 4 | Problem 6(f)

Consider a system consisting of k reservoirs such that the entries of each column in the system’s state
transition matrix sum to one.

Prove that if s is the total amount of water in the system at timestep n, then total amount of water at timestep
n+1 will also be s.

12. Discussion 4B | Q3

Is the set V =

~v
∣∣∣∣~v = c

1
1
1

+d

1
0
1

, where c,d ∈ R, a subspace of R3?

13. Note 9 | 9.6.1

Prove the following theorem:

Theorem 9.1: Given two eigenvectors ~v1 and ~v2 corresponding to two different eigenvalues λ1 and λ2 of a
matrix A, it is always the case that ~v1 and ~v2 are linearly independent.

14. (Proof Out of Scope) Note 9 | 9.6.2 (Proof By Induction)

Prove the following theorem:

Theorem 9.2: Let ~v1,~v2, ..., ~vm be eigenvectors of an n× n matrix with distinct eigenvalues. It is the case
that all the ~vi are linearly independent from one another.

The proof of this theorem is out of scope, but is presented anyway just for reference for those who are
interested.
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