EECS 16A Fall 2020

Some of the Proofs We Have Covered So Far

1. Note 3 | 3.1.1

Prove the following two definitions of Linear Dependence are equivalent:

Definition 3.1: A set of vectors $\{\vec{v_1},...,\vec{v_n}\}$ is linearly dependent if there exist scalars $\alpha_1,...,\alpha_n$ such that $\alpha_1\vec{v_1}+...+\alpha_n\vec{v_n}=0$ and not all α_i 's are equal to zero.

Definition 3.2: A set of vectors $\{\vec{v_1},...,\vec{v_n}\}$ is linearly dependent if there exist scalars $\alpha_1,...,\alpha_n$ and an index i such that $\vec{v_i} = \sum_{j \neq i} \alpha_j \vec{v_j}$. In words, a set of vectors is linearly dependent if one of the vectors could be written as a linear combination of the rest of the vectors.

2. Note 3 | 3.1.3

Prove the following theorem:

Theorem 3.1: If the system of linear equations $A\vec{x} = \vec{b}$ has an infinite number of solutions, then the columns of A are linearly dependent.

3. Note 4 | Example 4.1 (Example of Constructive Proof)

Prove that span
$$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} = \mathbb{R}^2$$

4. Note 4 | Example 4.2 (Example of Proof By Contradiction)

Prove the following theorem by contradiction:

Theorem 4.1: If the columns of **A** in the system of linear equations $A\vec{x} = \vec{b}$ are linearly dependent, then the system does not have a unique solution.

5. Note 4 | Example 4.3

Let $\{\vec{v_1}, \vec{v_2}, ..., \vec{v_n}\}$ be a set of linearly dependent vectors in \mathbb{R}^n . Take any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. Prove that the set of vectors $\{\mathbf{A}\vec{v_1}, \mathbf{A}\vec{v_2}, ..., \mathbf{A}\vec{v_n}\}$ is linearly dependent.

6. Note 4 | Example 4.4 (Example of Direct Proof)

Assume that vectors $\vec{v_1}$, $\vec{v_2}$ and $\vec{v_1} + \vec{v_2}$ are all solutions to the system of linear equations $\vec{A}\vec{x} = \vec{b}$. Prove that \vec{b} must be the zero vector.

7. Discussion 3A | Q1

Given some set of vectors $\{\vec{v_1}, \vec{v_2}, ... \vec{v_n}\}$, show the following:

- (a) span $\{\vec{v_1}, \vec{v_2}, ... \vec{v_n}\} = \text{span}\{\alpha \vec{v_1}, \vec{v_2}, ... \vec{v_n}\}$, where α is a non-zero scalar. In other words, we can scale our spanning vectors and not change their span.
- (b) span $\{\vec{v_1}, \vec{v_2}, ... \vec{v_n}\} = \text{span}\{\vec{v_1} + \vec{v_2}, \vec{v_2}, ... \vec{v_n}\}$. In other words, we can replace one vector with the sum of itself and another vector and not change their span.

8. Discussion 3A | Q2 Part 3

The distributivity property of matrix-vector multiplication holds for any vectors and matrices. Show for general $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ and $\vec{v_1}, \vec{v_2} \in \mathbb{R}^2$ that $\mathbf{A}(\vec{v_1} + \vec{v_2}) = \mathbf{A}\vec{v_1} + \mathbf{A}\vec{v_2}$.

9. Note 6 | 6.1.1

Prove the following theorems:

- (a) **Theorem 6.1**: If **A** is an invertible matrix, then its inverse must be unique.
- (b) **Theorem 6.2**: If $\mathbf{QP} = \mathbf{I}$ and $\mathbf{RQ} = \mathbf{I}$, then $\mathbf{P} = \mathbf{R}$. The matrix P can be thought of as the "right" inverse of \mathbf{Q} and the matrix \mathbf{R} can be thought of as the "left" inverse of \mathbf{Q} .

10. Note 6 | 6.2

Prove the following theorems:

- (a) **Theorem 6.3**: If a matrix **A** is invertible, there exists a unique solution to the equation $\mathbf{A}\vec{x} = \vec{b}$ for all possible vectors \vec{b} .
- (b) **Theorem 6.4**: If a matrix **A** is invertible, its columns are linearly independent.

11. Homework 4 | Problem 6(f)

Consider a system consisting of k reservoirs such that the entries of each column in the system's state transition matrix sum to one.

Prove that if *s* is the total amount of water in the system at timestep n, then total amount of water at timestep n+1 will also be s.

12. Discussion 4B | Q3

Is the set
$$V = \left\{ \vec{v} \middle| \vec{v} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + d \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$
, where $c, d \in \mathbb{R}$, a subspace of \mathbb{R}^3 ?

13. Note 9 | 9.6.1

Prove the following theorem:

Theorem 9.1: Given two eigenvectors $\vec{v_1}$ and $\vec{v_2}$ corresponding to two different eigenvalues λ_1 and λ_2 of a matrix A, it is always the case that $\vec{v_1}$ and $\vec{v_2}$ are linearly independent.

14. (Proof Out of Scope) Note 9 | 9.6.2 (Proof By Induction)

Prove the following theorem:

Theorem 9.2: Let $\vec{v_1}, \vec{v_2}, ..., \vec{v_m}$ be eigenvectors of an $n \times n$ matrix with distinct eigenvalues. It is the case that all the $\vec{v_i}$ are linearly independent from one another.

The proof of this theorem is out of scope, but is presented anyway just for reference for those who are interested.