1. Vectors

A vector is an ordered list of numbers. For instance, a point on a plane (x, y) is a vector! We label vectors using an arrow overhead \vec{v} , and since vectors can live in ANY dimension of space we'll need to leave our notation general $\vec{v} = (v_1, v_2, ...)$. Below are few more examples (the left-most form is the general definition):

$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n \qquad \qquad \vec{a} = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix} \in \mathbb{R}^3 \qquad \qquad \vec{b} = \begin{bmatrix} 2.4 \\ 5.3 \end{bmatrix} \in \mathbb{R}^2$$

Just to unpack this a bit more, $\vec{b} \in \mathbb{R}^3$ in english means "vector \vec{b} lives in 3-Dimensional space".

- The \in symbol literally means "in"
- The \mathbb{R} stands for "real numbers" (FUN FACT: \mathbb{Z} means "integers" like -2, 4, 0, ...)
- The exponent $\mathbb{R}^n \leftarrow$ indicates the dimension of space, or the number of elements in the vector.

One last thing: it is standard to write vectors in column-form, like seen with $\vec{a}, \vec{b}, \vec{x}$ above. We call these *column vectors*, in contrast to horizontally written vectors which we call *row vectors*.

Okay, let's dig into a few examples:

(a) Which of the following vectors live in \mathbb{R}^2 space?

$$i. \begin{bmatrix} 3 \\ 6 \end{bmatrix} \qquad \qquad ii. \begin{bmatrix} 5 \\ 0 \\ 3 \\ 5 \end{bmatrix} \qquad \qquad iii. \begin{bmatrix} -4.76 \\ 1.32 \\ 0.01 \end{bmatrix} \qquad \qquad iv. \begin{bmatrix} -20 \\ 100 \end{bmatrix}$$

(b) Graphically show the vectors (either in a sketch with axes, or a plot on a computer):

i.	2		5
	5	11.	2

(c) Compute the sum $\vec{a} + \vec{b} = \vec{c}$ from the vectors below, and then graphically sketch or plot these vectors. (show them in a way that forms a triangle; also is there only one possible triangle?)

$$\vec{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \qquad \vec{b} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

1

2. Computations: matrix-vector multiplication

For each matrix vector multiplication problem, find the product by hand

(a)

$$A = \begin{bmatrix} 1 & 6 \\ 2 & -7 \end{bmatrix} \vec{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

(b)

$$A = \begin{bmatrix} 1 & 9 & 2 \\ 7 & 10 & -7 \\ -1 & 2 & -8 \end{bmatrix} \vec{b} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$

3. Matrix Multiplication

Consider the following matrices:

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$$
$$\mathbf{E} = \begin{bmatrix} 1 & 9 & 5 & 7 \\ 4 & 3 & 2 & 2 \end{bmatrix} \qquad \mathbf{F} = \begin{bmatrix} 5 & 5 & 8 \\ 6 & 1 & 2 \\ 4 & 1 & 7 \\ 3 & 2 & 2 \end{bmatrix} \qquad \mathbf{G} = \begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} 5 & 3 & 4 \\ 1 & 8 & 2 \\ 2 & 3 & 5 \end{bmatrix}$$

For each matrix multiplication problem, *if the product exists*, find the product by hand. Otherwise, explain why the product does not exist.

- (a) **A B**
- (b) **C D**
- (c) **DC**
- (d) C E
- (e) **F E** (only note whether or not the product exists)
- (f) **E F** (only note whether or not the product exists)
- (g) **G H** (Practice on your own)
- (h) **H G** (Practice on your own)