EECS 16A Designing Information Devices and Systems I Spring 2022 Discussion 2A

1. Vectors

A vector is an ordered list of numbers. For instance, a point on a plane (x, y) is a vector! We label vectors using an arrow overhead \vec{v}, and since vectors can live in ANY dimension of space we'll need to leave our notation general $\vec{v}=\left(v_{1}, v_{2}, \ldots\right)$. Below are few more examples (the left-most form is the general definition):

$$
\vec{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \in \mathbb{R}^{n} \quad \vec{a}=\left[\begin{array}{c}
3 \\
1 \\
4
\end{array}\right] \in \mathbb{R}^{3} \quad \vec{b}=\left[\begin{array}{c}
2.4 \\
5.3
\end{array}\right] \in \mathbb{R}^{2}
$$

Just to unpack this a bit more, $\vec{b} \in \mathbb{R}^{3}$ in english means "vector \vec{b} lives in 3-Dimensional space".

- The \in symbol literally means "in"
- The \mathbb{R} stands for "real numbers" (FUN FACT: \mathbb{Z} means "integers" like $-2,4,0, \ldots$)
- The exponent $\mathbb{R}^{n} \leftarrow$ indicates the dimension of space, or the number of elements in the vector.

One last thing: it is standard to write vectors in column-form, like seen with $\vec{a}, \vec{b}, \vec{x}$ above. We call these column vectors, in contrast to horizontally written vectors which we call row vectors.

Okay, let's dig into a few examples:
(a) Which of the following vectors live in \mathbb{R}^{2} space?

$$
\text { i. }\left[\begin{array}{l}
3 \\
6
\end{array}\right] \quad \text { ii. }\left[\begin{array}{l}
5 \\
0 \\
3 \\
5
\end{array}\right] \quad \text { iii. }\left[\begin{array}{c}
-4.76 \\
1.32 \\
0.01
\end{array}\right] \quad \text { iv. }\left[\begin{array}{c}
-20 \\
100
\end{array}\right]
$$

(b) Graphically show the vectors (either in a sketch with axes, or a plot on a computer):

$$
\text { i. }\left[\begin{array}{l}
2 \\
5
\end{array}\right] \quad \text { ii. }\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

(c) Compute the sum $\vec{a}+\vec{b}=\vec{c}$ from the vectors below, and then graphically sketch or plot these vectors. (show them in a way that forms a triangle; also is there only one possible triangle?)

$$
\vec{a}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \vec{b}=\left[\begin{array}{l}
4 \\
3
\end{array}\right]
$$

2. Computations: matrix-vector multiplication

For each matrix vector multiplication problem, find the product by hand
(a)

$$
A=\left[\begin{array}{cc}
1 & 6 \\
2 & -7
\end{array}\right] \vec{b}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{ccc}
1 & 9 & 2 \\
7 & 10 & -7 \\
-1 & 2 & -8
\end{array}\right] \vec{b}=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]
$$

3. Matrix Multiplication

Consider the following matrices:

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
1 & 4
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right] \quad \mathbf{D}=\left[\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right] \\
\mathbf{E}=\left[\begin{array}{llll}
1 & 9 & 5 & 7 \\
4 & 3 & 2 & 2
\end{array}\right] \quad \mathbf{F}=\left[\begin{array}{lll}
5 & 5 & 8 \\
6 & 1 & 2 \\
4 & 1 & 7 \\
3 & 2 & 2
\end{array}\right] \quad \mathbf{G}=\left[\begin{array}{lll}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{array}\right] \quad \mathbf{H}=\left[\begin{array}{lll}
5 & 3 & 4 \\
1 & 8 & 2 \\
2 & 3 & 5
\end{array}\right]
\end{gathered}
$$

For each matrix multiplication problem, if the product exists, find the product by hand. Otherwise, explain why the product does not exist.
(a) $\mathbf{A B}$
(b) $\mathbf{C D}$
(c) $\mathbf{D ~ C}$
(d) $\mathbf{C E}$
(e) $\mathbf{F} \mathbf{E}$ (only note whether or not the product exists)
(f) $\mathbf{E} \mathbf{F}$ (only note whether or not the product exists)
(g) G H (Practice on your own)
(h) H G (Practice on your own)

