EECS 16A Designing Information Devices and Systems I

Spring 2022

1. Visualizing Span

We are given a point \vec{c} that we want to get to, but we can only move in two directions: \vec{a} and \vec{b}. We know that to get to \vec{c}, we can travel along \vec{a} for some amount α, then change direction, and travel along \vec{b} for some amount β. We want to find these two scalars α and β, such that we reach point \vec{c}. That is, $\alpha \vec{a}+\beta \vec{b}=\vec{c}$.

(a) Formulate the system of equations as a matrix to find the unknowns, α, β, in terms of the vectors $\vec{a}, \vec{b}, \vec{c}$.
(b) First, consider the case where $\vec{a}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \vec{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and $\vec{c}=\left[\begin{array}{c}-2 \\ 2\end{array}\right]$. Draw these vectors on a sheet of paper. Now find the two scalars α and β, such that we reach point \vec{c}. What are these scalars if we use $\vec{a}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ instead?

2. Span Basics

(a) What is span $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$?
(b) Is $\left[\begin{array}{l}5 \\ 5 \\ 0\end{array}\right]$ in span $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$?
(c) What is a possible choice for \vec{v} that would make $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right], \vec{v}\right\}=\mathbb{R}^{3}$?
(d) For what values of b_{1}, b_{2}, b_{3} is the following system of linear equations consistent? ("Consistent" means there is at least one solution.)

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
0 & 0
\end{array}\right] \vec{x}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

3. Span Proofs

Given some set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$, show the following:
(a)

$$
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}=\operatorname{span}\left\{\alpha \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}, \text { where } \alpha \text { is a non-zero scalar }
$$

In other words, we can scale our spanning vectors and not change their span.
(b) (for practice)

$$
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}=\operatorname{span}\left\{\vec{v}_{2}, \vec{v}_{1}, \ldots, \vec{v}_{n}\right\}
$$

In other words, we can swap the order of our spanning vectors and not change their span.

