EECS 16A Designing Information Devices and Systems I

Spring 2022

1. Identifying a Subspace: Proof

Is the set

$$
V=\left\{\vec{v} \left\lvert\, \vec{v}=c\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+d\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right. \text {, where } c, d \in \mathbb{R}\right\}
$$

a subspace of \mathbb{R}^{3} ? Why or why not?

2. Exploring Column Spaces and Null Spaces

- The column space is the span of the column vectors of the matrix.
- The null space is the set of input vectors that when multiplied with the matrix result in the zero vector.

For the following matrices, answer the following questions:
i. What is the column space of \mathbf{A} ? What is its dimension?
ii. What is the null space of \mathbf{A} ? What is its dimension?
iii. Are the column spaces of the row reduced matrix \mathbf{A} and the original matrix \mathbf{A} the same?
iv. Do the columns of \mathbf{A} span \mathbb{R}^{2} ? Do they form a basis for \mathbb{R}^{2} ? Why or why not?
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right]$
(d) $\left[\begin{array}{cc}-2 & 4 \\ 3 & -6\end{array}\right]$
(e) $\left[\begin{array}{cccc}1 & -1 & -2 & -4 \\ 1 & 1 & 3 & -3\end{array}\right]$

