EECS 16A Designing Information Devices and Systems I

 Spring 2022
1. Mechanical Determinants

(a) Compute the determinant of $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$.
(b) Compute the determinant of $\left[\begin{array}{ccc}2 & -3 & 1 \\ 2 & 0 & -1 \\ 1 & 4 & 5\end{array}\right]$.
(c) We know that the determinant of a matrix represents the multi-dimensional volume formed by the column vectors. Explain geometrically why the determinant of a matrix with linearly dependent column vectors is always 0 .

2. Mechanical Eigenvalues and Eigenvectors

In each part, find the eigenvalues of the matrix \mathbf{M} and the associated eigenvectors.
(a) $\mathbf{M}=\left[\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right]$

Do you observe anything?
(b) $\mathbf{M}=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]$
(c) Without calculation, determine whether the identity matrix in \mathbb{R}^{n} have any eigenvalues $\lambda \in \mathbb{R}$. What are the corresponding eigenvectors?

3. Steady and Unsteady States

You're given the matrix \mathbf{M} :

$$
\mathbf{M}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
0 & 1 & -2 \\
0 & 0 & 2
\end{array}\right]
$$

which generates the next state of a physical system from its previous state: $\vec{x}[k+1]=\mathbf{M} \vec{x}[k]$.
(a) The eigen values of \mathbf{M} are $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=\frac{1}{2}$. Define $\vec{x}=\alpha \vec{v}_{1}+\beta \vec{v}_{2}+\gamma \vec{v}_{3}$, a linear combination of the eigenvectors corresponding to the eigen values. For each of the cases in the table, determine if

$$
\lim _{n \rightarrow \infty} \mathbf{M}^{n} \vec{x}
$$

converges. If it does, what does it converge to?

α	β	γ	Converges?	$\lim _{n \rightarrow \infty} \mathbf{M}^{n} \vec{x}$
0	0	$\neq 0$		
0	$\neq 0$	0		
0	$\neq 0$	$\neq 0$		
$\neq 0$	0	0		
$\neq 0$	0	$\neq 0$		
$\neq 0$	$\neq 0$	0		
$\neq 0$	$\neq 0$	$\neq 0$		

(b) (Practice) Find the eigenspaces associated with the eigenvalues:
i. $\operatorname{span}\left(\vec{v}_{1}\right)$, associated with $\lambda_{1}=1$
ii. $\operatorname{span}\left(\vec{v}_{2}\right)$, associated with $\lambda_{2}=2$
iii. $\operatorname{span}\left(\vec{v}_{3}\right)$, associated with $\lambda_{3}=\frac{1}{2}$

