EECS 16A Designing Information Devices and Systems I Spring 2022 Discussion 5B

1. Mechanical Determinants

(a) Compute the determinant of $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.

(b) Compute the determinant of
$$\begin{bmatrix} 2 & -3 & 1 \\ 2 & 0 & -1 \\ 1 & 4 & 5 \end{bmatrix}$$
.

(c) We know that the determinant of a matrix represents the multi-dimensional volume formed by the column vectors. Explain geometrically why the determinant of a matrix with linearly dependent column vectors is always 0.

2. Mechanical Eigenvalues and Eigenvectors

In each part, find the eigenvalues of the matrix M and the associated eigenvectors.

(a)
$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}$$

Do you observe anything?

(b)
$$\mathbf{M} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

(c) Without calculation, determine whether the identity matrix in \mathbb{R}^n have any eigenvalues $\lambda \in \mathbb{R}$. What are the corresponding eigenvectors?

3. Steady and Unsteady States

You're given the matrix M:

$$\mathbf{M} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & -2 \\ 0 & 0 & 2 \end{bmatrix}$$

which generates the next state of a physical system from its previous state: $\vec{x}[k+1] = \mathbf{M}\vec{x}[k]$.

(a) The eigen values of **M** are $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = \frac{1}{2}$. Define $\vec{x} = \alpha \vec{v}_1 + \beta \vec{v}_2 + \gamma \vec{v}_3$, a linear combination of the eigenvectors corresponding to the eigen values. For each of the cases in the table, determine if

$$\lim_{n\to\infty}\mathbf{M}^n\vec{x}$$

converges. If it does, what does it converge to?

α	β	γ	Converges?	$\lim_{n\to\infty}\mathbf{M}^n\vec{x}$
0	0	$\neq 0$		
0	$\neq 0$	0		
0	$\neq 0$	eq 0		
$\neq 0$	0	0		
$\neq 0$	0	$\neq 0$		
$\neq 0$	$\neq 0$	0		
$\neq 0$	$\neq 0$	eq 0		

- (b) (**Practice**) Find the eigenspaces associated with the eigenvalues:
 - i. span(\vec{v}_1), associated with $\lambda_1 = 1$
 - ii. span(\vec{v}_2), associated with $\lambda_2 = 2$
 - iii. span(\vec{v}_3), associated with $\lambda_3 = \frac{1}{2}$