EECS 16A Designing Information Devices and Systems I
 Spring 2022

1. True or False?

For each of the following subpart below, prove whether the statement is True or False.
(a) There exists an invertible $n \times n$ matrix A for which $A^{2}=0$.
(b) If A is an invertible $n \times n$ matrix, then for all vectors $\vec{b} \in \mathbb{R}^{n}$, the system $A \vec{x}=\vec{b}$ has a unique solution.
(c) If A and B are invertible $n \times n$ matrices, then the product $A B$ is invertible.
(d) The two vectors $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$ form a basis for the subspace, $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$.
(e) The dimension of the subspace, $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$, is 3 .
(f) A set of n linearly dependent vectors in \mathbb{R}^{n} can span \mathbb{R}^{n}.

2. Are eigenvectors linearly independent?

Suppose we have a square matrix $\mathbf{A}^{n \times n}$ with ' n ' distinct eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ (meaning that $\lambda_{i} \neq \lambda_{j}$ when $i \neq j$) and ' n ' corresponding eigenvectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$. Prove that any two eigenvectors \vec{v}_{i}, \vec{v}_{j} (for $i \neq j$) are linearly independent.

HINT: Begin proof by contradiction: Suppose that \vec{v}_{i} and \vec{v}_{j} correspond to distinct eigenvalues, so that $\left(\lambda_{i}-\lambda_{j}\right) \neq 0$, and are linearly dependent. Show this leads to a nonsensical equality after applying \mathbf{A}. (Please ask the staff for guidance if this hint is too vague!)

3. Steady State Reservoir Levels

We have 3 reservoirs: A, B and C. The pumps system between the reservoirs is depicted in Figure 1.

Figure 1: Reservoir pumps system.
(a) Write out the transition matrix \mathbf{T} representing the pumps system.
(b) You are told that $\lambda_{1}=1, \lambda_{2}=\frac{-\sqrt{2}-1}{10}, \lambda_{3}=\frac{\sqrt{2}-1}{10}$ are the eigenvalues of \mathbf{T}. Find a steady state vector \vec{x}, i.e. a vector such that $T \vec{x}=\vec{x}$.
(c) What does the magnitude of the other two eigenvalues λ_{2} and λ_{3} say about the steady state behavior of their associated eigenvectors?
(d) Assuming that you start the pumps with the water levels of the reservoirs at $A_{0}=129, B_{0}=109, C_{0}=0$ (in kiloliters), what would be the steady state water levels (in kiloliters) according to the pumps system described above?

