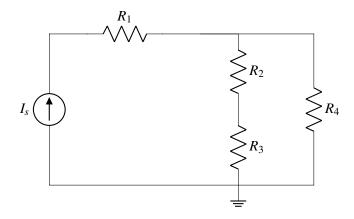
EECS 16A D Spring 2022

Designing Information Devices and Systems I Discussion 7A

1. Material Resistivity

(a) Recall the 1D resistive touch screen model introduced in class. In this model, the top layer can be thought of as a resistor, while the bottom layer can be thought of as a wire. When the top layer is touched, it flexes at the touch point and makes contact with the bottom layer. This results in a voltage divider.


Material	Resistivity ρ (Ω cm)	Conductivity 1/ρ (Ω ⁻¹ cm ⁻¹)
Silver	1.6 x 10 ⁻⁵	6.3 x 10 ⁴
Aluminum	2.7 x 10 ⁻⁵	3.7 x 10 ⁴
Carbon (graphite)	10 x 10 ⁻²	10
Rubber	100 x 10 ¹²	1 x 10 ⁻¹⁴

Given the following list of materials and their resistivity/conductivity, which materials would be good to use as a top layer, and which would be good to use as a bottom layer? Why?

- (b) Let's say you want to make your own **10 cm** long resistor out of **graphite**. You need the resistance to be **1** Ω . Recall the equation for resistance: $R = \rho \frac{L}{A} = \rho \frac{L}{W*H}$
 - i. What are some possible widths and heights of your resistor?
 - ii. Can you think of advantages of having a wide and thin resistor? How about advantages of a narrow and thick resistor?

2. More Node Voltage Analysis!

Given $I_s = 1$ A, $R_1 = 4\Omega$, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 10\Omega$, find the voltage across and the current through each of the resistors in the circuit below:

