EECS 16A Designing Information Devices and Systems I

Spring 2022

1. Series And Parallel Capacitors

Derive $C_{e q}$ for the following circuits.
(a)

(b)

2. Current Sources And Capacitors

(a) For the circuits given below, give an expression for $v_{\text {out }}(t)$ in terms of $I_{s}, C_{1}, C_{2}, C_{3}$ and t. Assume that all capacitors are initially uncharged, i.e. the initial voltage across each capacitor is 0 V .
i.

ii.

(b) For the circuit in subpart (i) of part (a), assume that the direction of the current is flipped at some time $t=T$. Give an expression for $v_{\text {out }}(t)$ for $t>T$ in terms of I_{s}, C_{1} and C_{2}. For what value of t will $v_{\text {out }}(t)=0$?

3. Voltage Booster

We have made extensive use of resistive voltage dividers to reduce voltage. What about a circuit that boosts voltage to a value greater than the supply $V_{S}=5 V$? We can do this with capacitors!

(a) In the circuit above switches ϕ_{1} are initially closed and switch ϕ_{2} is initially open. Calculate the value of the output voltage, $V_{\text {out }}$ with respect to ground, and the amount of charge stored on capacitor, C, at that state (phase 1).
(b) Now, after the capacitors are charged, switches ϕ_{1} are opened and switch ϕ_{2} is closed. Calculate the new voltage output voltage, $V_{\text {out }}$, at steady state.

