EECS 16A Designing Information Devices and Systems I Discussion 9A

(b)

1. Series And Parallel Capacitors

Derive C_{eq} for the following circuits.

(a)

2. Current Sources And Capacitors

(a) For the circuits given below, give an expression for $v_{out}(t)$ in terms of I_s , C_1 , C_2 , C_3 and t. Assume that all capacitors are initially uncharged, i.e. the initial voltage across each capacitor is 0V.

i.

1

(b) For the circuit in subpart (i) of part (a), assume that the direction of the current is flipped at some time t = T. Give an expression for $v_{out}(t)$ for t > T in terms of I_s , C_1 and C_2 . For what value of t will $v_{out}(t) = 0$?

3. Voltage Booster

We have made extensive use of resistive voltage dividers to reduce voltage. What about a circuit that boosts voltage to a value greater than the supply $V_S = 5V$? We can do this with capacitors!

- (a) In the circuit above switches ϕ_1 are initially closed and switch ϕ_2 is initially open. Calculate the value of the output voltage, V_{out} with respect to ground, and the amount of charge stored on capacitor, *C*, at that state (phase 1).
- (b) Now, after the capacitors are charged, switches ϕ_1 are opened and switch ϕ_2 is closed. Calculate the new voltage output voltage, V_{out} , at steady state.