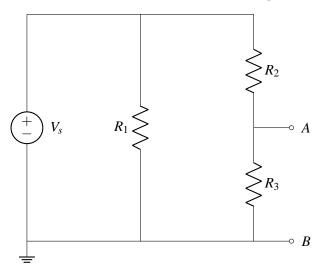
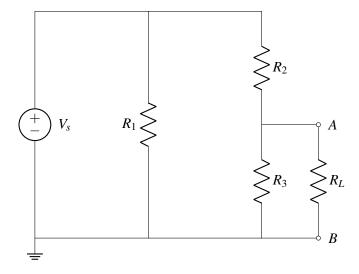

EECS 16A Spring 2022

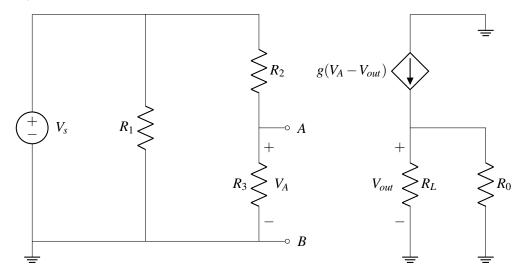
Designing Information Devices and Systems I Discussion 11A

1. Superposition


Consider the following circuit:

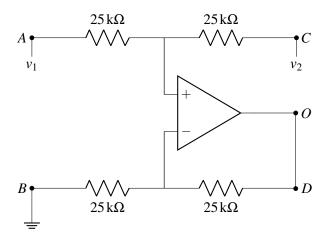

- (a) With the current source turned on and the voltage source turned off, find the current I_{R_3} .
- (b) With the voltage source turned on and the current source turned off, find the voltage drop across R_3 , V_{R_3} .
- (c) Find the power dissipated by R_3 .

2. Thévenin/Norton Equivalence

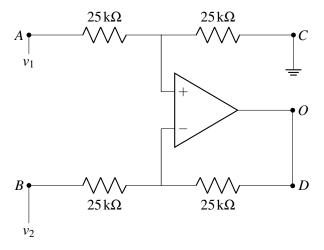

(a) Find the Thévenin resistance R_{th} of the circuit shown below, with respect to its terminals A and B.

(b) Now, a load resistor, $R_L = R$, is connected across terminals A and B as shown in the circuit below. Find the power dissipated in the load resistor in terms of given variables.

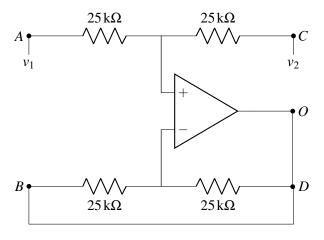
(c) We modify the circuit as shown below, where g is a known constant:


Find a symbolic expression for V_{out} as a function of V_s .

Hint: Redraw the left part of the circuit using its Thévenin equivalent.

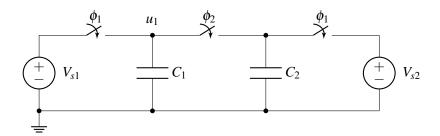

3. A Versatile Opamp Circuit

For each subpart, determine the voltage at *O*.


(a) Configuration 1:


(b) Configuration 2:

(c) Configuration 3:


4. Multiple Inputs To One Op-Amp

- (a) For the circuit above, find an expression for v_o . (Hint: Use superposition.)
- (b) How could you use this circuit to find the sum of different signals, i.e. $V_{s1} + V_{s2}$? What about taking the sum and multiplying by 2, i.e. $2(V_{s1} + V_{s2})$?

5. Capacitive Charge Sharing (from Spring 2020 Midterm 2)

Consider the circuit below with $C_1 = C_2 = 1 \,\mu\text{F}$ and three switches ϕ_1 , ϕ_2 . Suppose that initially the switches ϕ_1 are closed and ϕ_2 is open such that C_1 and C_2 are charged through the corresponding voltage sources $V_{s1} = 1 \,\text{V}$ and $V_{s2} = 2 \,\text{V}$.

- (a) How much charge is on C_1 and C_2 ?
- (b) Now suppose that some time later, switch ϕ_1 opens and switch ϕ_2 closes. What is the value of voltage u_1 at steady state?