

Last Lecture...

Toolbox

- Resistors
- Capacitors
- Open-circuits
- Voltage Dividers/Summers
- Op-Amps
- Thevenin and Norton Equivalence
- KCL/KVL
- Element Definitions
- DAC
- Negative Feedback
- Op-Amp in Negative Feedback
- "Golden Rules" for Op-Amps

GR \#1: $I_{+}=0, I_{-}=0$ no current into OpAmp GR \#2: in negative feedback: $U^{+}=U^{-}$

Checking for Negative Feedback

Step 1 - Zero out all independent sources

- replacing voltage sources with wires
- current sources with open circuits as in superposition

Step 2 - Wiggle the output and check the loop - to check how the feedback loop responds to a change.

- if the ($U^{+}-U^{-}$) decreases, the output $A\left(U^{+}-U^{-}\right)$must also decrease. The circuit is in negative feedback
- if the ($U^{+}-U^{-}$) increases, the output $A\left(U^{+}-U^{-}\right)$must also increase. The circuit is in positive feedback

Checking for Negative Feedback

Step 1 - Zero out all independent sources

- replacing voltage sources with wires
- current sources with open circuits as in superposition

Step 2 - Wiggle the output and check the loop - to check how the feedback loop responds to a change.

- if the ($U^{+}-U^{-}$) decreases, the output $A\left(U^{+}-U^{-}\right)$must also decrease. The circuit is in negative feedback
- if the ($U^{+}-U^{-}$) increases, the output $A\left(U^{+}-U^{-}\right)$must also increase. The circuit is in positive feedback

Negative feedback

(1)

$$
\begin{aligned}
& U_{1}=V_{\text {in }} \\
& U_{3}=V_{\text {out }} \\
& U_{2}=0
\end{aligned}
$$

NFB \Rightarrow Golden Rule \#2 $\Rightarrow U^{-}=U^{+}$
(2) Element Definitions:

$$
\begin{aligned}
& V_{R_{1}}=I_{1} R_{1} \\
& V_{R_{2}}=I_{1} R_{2} \\
& V_{R_{1}}=U_{1}-U_{2}=V_{\text {in }} \\
& V_{R_{2}}=U_{2}-U_{3}=-V_{\text {out }}
\end{aligned}
$$

NEB \Rightarrow Golden Rule \#2 $\Rightarrow U^{-}=U^{+}$
(1)

$$
\begin{aligned}
& U_{1}=V_{\text {in }} \\
& U_{3}=V_{\text {out }} \\
& U_{2}=0
\end{aligned}
$$

(2) Element Definitions:

$$
\begin{aligned}
& V_{R_{1}}=I_{1} R_{1} \\
& V_{R_{2}}=I_{1} R_{2} \\
& V_{R_{1}}=U_{1}-U_{2}=V_{\text {in }} \\
& V_{R_{2}}=\zeta_{2}-U_{3}=-V_{\text {out }}
\end{aligned}
$$

A faster way...

$$
\text { NFB } \Rightarrow \text { Golden Rule \#2 } \Rightarrow U^{-}=U^{+}
$$

$$
U^{+}=0 \Rightarrow U^{-}=0 \Rightarrow U_{2}=0
$$

GR\#1 $+\mathrm{KCL} \quad I_{1}=I_{2}+X$

$$
\begin{aligned}
\frac{U_{1}-Z_{2}}{R_{1}} & =\frac{U_{2}-U_{3}}{R_{2}} \\
\frac{V_{\text {in }}}{R_{1}} & =-\frac{V_{\text {out }}}{R_{2}} \\
\frac{V_{\text {out }}}{V_{\text {in }}} & =-\frac{R_{2}}{R_{1}}
\end{aligned}
$$

Example circuit 2 (trans-resistance amplifier)

Example circuit 2 (trans-resistance amplifier)

(12)

Zero-out independent sources
From GR \#1: $\quad I_{+}=0 \Rightarrow I_{2}=0$

$$
\Rightarrow U_{2}=U_{1}
$$

(2) Check for negative feedback

$$
A\left(U^{+}-U^{-}\right)
$$

Increasing output, increases U^{+}, increases output

Example circuit 2 (trans-resistance amplifier)

(12)

Zero-out independent sources

$$
\text { From GR \#1: } \quad \begin{aligned}
I_{-}=0 & \Rightarrow I_{2}=0 \\
& \Rightarrow U_{2}=U_{1}
\end{aligned}
$$

(2) Check for negative feedback

$$
\left.A\left(U^{+}-U^{-}\right)\right\}
$$

Increasing output, increases U^{-}, decreases output

Example circuit 2 (trans-resistance amplifier)

NFB \Rightarrow Golden Rule \#2 $\Rightarrow U^{-}=U^{+}$
$U^{+}=0 \Rightarrow U^{-}=0 \Rightarrow U_{1}=0$
Golden Rule \#1 \& KCL $\quad I_{\text {in }}=I_{r}+\mathrm{X}$

$$
\begin{aligned}
I_{\text {in }} & =\frac{X_{-}-U_{2}}{R_{1}} \\
V_{\text {out }} & =-R_{1} I_{\text {in }}
\end{aligned}
$$

Input current, output is voltage!

Example circuit 3 -

Example circuit 3 -

Example circuit 3 -

Example circuit 3 -

(1) Zero-out independent sourcesCheck for negative feedback

$$
A\left(U^{+}-J^{-}\right) \swarrow
$$

Increasing output, decreases U^{-}, increases output
Not in Negative feedback

Example circuit 3 -

(1) Zero-out independent sources
(D) Check for negative feedback

$$
A\left(U^{+}-U^{-}\right)
$$

Increasing output, decreases U^{+}, decreases output in Negative feedback

Example circuit 3 -

$$
\mathrm{NFB} \Rightarrow \text { Golden Rule \#2 } \Rightarrow U^{-}=U^{+}
$$

$$
\Rightarrow V_{\mathrm{in}}=-V_{f}
$$

Voltage divider:

$$
\begin{aligned}
V_{f} & =\frac{R_{2}}{R_{1}+R 2} V_{\text {out }} \\
V_{\text {in }} & =-\frac{R_{2}}{R_{1}+R 2} V_{\text {out }}
\end{aligned}
$$

$$
A \nu=\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{1}+R 2}{R_{2}}=-\left(1+\frac{R_{1}}{R_{2}}\right)
$$

Artificial Neuron

- Neurons in our brain are interconnected.
- The output of a single-neuron is dependent on inputs from several other neurons.
- This idea is represented with vector-vector multiplication - the output is a linear combination of several inputs.
- An artificial neuron circuit must perform addition and multiplication.

$$
\left[\begin{array}{lll}
w_{1 j} & w_{2 j} & \cdots \\
w_{n j}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\sum_{i=1}^{n} w_{i j} x_{i}
$$

An Artificial Neuron

Artificial Neuron

- Neurons in our brain are interconnected.
- The output of a single-neuron is dependent on inputs from several other neurons.
- This idea is represented with vector-vector multiplication - the output is a linear combination of several inputs.
- An artificial neuron circuit must perform addition and multiplication.

(1) Zero-out independent sources

Artificial Neuron

- Neurons in our brain are interconnected.
- The output of a single-neuron is dependent on inputs from several other neurons.
- This idea is represented with vector-vector multiplication - the output is a linear combination of several inputs.
- An artificial neuron circuit must perform addition and multiplication.

Zero-out independent sources
(2) Check for negative feedback

Increasing output, increases U^{-}, decreases output
in Negative feedback

Artificial Neuron

- Neurons in our brain are interconnected.
- The output of a single-neuron is dependent on inputs from several other neurons.
- This idea is represented with vector-vector multiplication - the output is a linear combination of several inputs.
- An artificial neuron circuit must perform addition and multiplication.

NFB \Rightarrow Golden Rule \#2 $\Rightarrow U^{-}=U^{+}$

$$
U^{+}=0 \Rightarrow U^{-}=0
$$

$$
\text { KCL: } I_{1}+I_{2}=I_{3}+X
$$

$$
\frac{\nless-V_{1}}{R_{1}}+\frac{\chi^{-}-V_{2}}{R_{2}}=\frac{V_{\text {out }}-\chi^{-}}{R_{3}}
$$

$$
-\frac{V_{1}}{R_{1}}-\frac{V_{2}}{R_{2}}=\frac{V_{\text {out }}}{R_{3}}
$$

$$
V_{\text {out }}=-\frac{R_{3}}{R_{1}} V_{1}-\frac{R_{3}}{R_{2}} V_{2} \cdots-\frac{R_{3}}{R_{i}} V_{1} \cdots
$$

Artificial Neuron

$$
\begin{gathered}
V_{\text {out }}=--\frac{R_{3}}{R_{y}} V_{1}-\frac{R_{3}}{R_{2}} V_{2} \cdots--\frac{R_{3}}{R_{i}} V_{1} \cdots \\
l_{1} \quad e_{2} \quad \omega_{i}
\end{gathered}
$$

Q: All weights are negative. How can we change sign?
A: Add an inverting amp circuit?

Artificial Neuron

$$
\begin{gathered}
V_{\text {out }}=--\frac{R_{3}}{R_{l}} V_{1}-\frac{R_{3}}{R_{2}} V_{2} \cdots \\
e_{1} \quad e_{2} \quad \omega_{2} \frac{R_{3}}{R_{i}} V_{1} \cdots \\
\omega_{i}
\end{gathered}
$$

Q: All weights are negative. How can we change sign?
Q: Can we inverting amp circuit?

Artificial Neuron

$$
\begin{gathered}
V_{\text {out }}=-\frac{R_{3}}{R_{1}} V_{1}-\frac{R_{3}}{R_{2}} V_{2} \cdots-\frac{R_{3}}{R_{i}} V_{1} \cdots \\
\omega_{1} \quad \omega_{2} \quad \omega_{i}
\end{gathered}
$$

Q: All weights are negative. How can we change sign?
Q: Can we add an inverting amp circuit?

A: Not always.... But perhaps here is OK.
Q: What's the requirement on Rth?
A: Rth $=0$?

Artificial Neuron

$$
\begin{gathered}
V_{\text {out }}=--\frac{R_{3}}{R_{l}} V_{1}-\frac{R_{3}}{R_{2}} V_{2} \cdots- \\
l_{1} \quad e_{2} \quad \omega_{i} \frac{R_{3}}{R_{i}} V_{1} \cdots \\
\omega_{1}
\end{gathered}
$$

Q: All weights are negative. How can we change sign?
Q: Can we add an inverting amp circuit?

A: Not always.... But perhaps here is OK.
Q: What's the requirement on Rath?
A: Rath $=0$?

Unity Gain Buffer

- Safely cascading circuit modules

Unity Gain Buffer

- Safely cascading circuit modules

Unity Gain Buffer

- Safely cascading circuit modules

$$
\begin{aligned}
& U^{+}=V_{\text {in }} \\
& U^{-}=V_{\text {out }} \\
& \text { NFB } \Rightarrow \text { Golden Rule \#2 } \Rightarrow U^{-}=U^{+} \\
& V_{\text {in }}=V_{\text {out }}
\end{aligned}
$$

