
 
 
 

Welcome to EECS 16A!  
Designing Information Devices and Systems I 

Ana Arias and Miki Lustig

 2022 

Lecture 10A

Design Procedure and Examples

Today

“Artificial Neuron “
• Neurons in our brain are interconnected.
• The output of a single-neuron is dependent on inputs from several other neurons.
• This idea is represented with vector-vector multiplication – the output is a linear combination of several inputs.
• An artificial neuron circuit must perform addition and multiplication.

NFB ⇒ ⇒ U− = U+Golden Rule #2Golden Rule #2
U+ = 0 ⇒ U− = 0
KCL: I1 + I2 = I3 + I−

U− − V1

R1
+

U− − V2

R2
=

Vout − U−

R3

−
V1

R1
−

V2

R2
=

Vout

R3

Vout = −
R3

R1
V1 −

R3

R2
V2 ⋯ −

R3

Ri
V1⋯

Artificial Neuron Vout = −
R3

R1
V1 −

R3

R2
V2 ⋯ −

R3

Ri
V1⋯

Q: All weights are negative. How can we change sign?
A: Add an inverting amp circuit?

Artificial Neuron Vout = −
R3

R1
V1 −

R3

R2
V2 ⋯ −

R3

Ri
V1⋯

Q: All weights are negative. How can we change sign?
Q: Can we add an inverting amp circuit?

Artificial Neuron Vout = −
R3

R1
V1 −

R3

R2
V2 ⋯ −

R3

Ri
V1⋯

Q: All weights are negative. How can we change sign?
Q: Can we add an inverting amp circuit?

Q: What’s the requirement on Rth?

A: Rth = 0?

A: Not always…. But perhaps here is OK.

Artificial Neuron Vout = −
R3

R1
V1 −

R3

R2
V2 ⋯ −

R3

Ri
V1⋯

Q: All weights are negative. How can we change sign?
Q: Can we add an inverting amp circuit?

Q: What’s the requirement on Rth?

A: Rth = 0?

A: Not always…. But perhaps here is OK.

Cascading blocks
• Safely cascading circuit modules

DAC Motor

Want to blocks , and to keep their functionality 
 without affecting and vice versa.

f{} g{}
g{} f{}

f{} g{}

Cascading blocks
• Safely cascading circuit modules

DAC Motor

Want to blocks , and to keep their functionality 
 without affecting and vice versa.

f{} g{}
g{} f{}

UmidL UmidR

After connection: UmidL = UmidR =
Rs

Rth + Rs
VDAC

Buffer

Cascading blocks
• Safely cascading circuit modules

DAC Motor

Want to blocks , and to keep their functionality 
 without affecting and vice versa.

f{} g{}
g{} f{}

UmidL UmidR

After connection: UmidL = UmidR = VDAC

Buffer / Unity Gain Amplifier

Buffer

f{} g{}

From perspective of block : See open circuitf{}

From perspective of block : See a voltage sourceg{}

Rth =

Rth =

Unity Gain Buffer
• Safely cascading circuit modules

DAC SpeakerBuffer

U+ = Vin
U− = Vout

NFB ⇒ ⇒ U− = U+Golden Rule #2Golden Rule #2

Vin = Vout

Example 1:
• Want to cascade two blocks: Vin

R2

R1 + R2
Av = 10 VoutUmid

R1

R2
Vin

UmidL

9R

R

UmidR

Vout = Vin (1 +
Rtop

Rbottom)

Example 1:
• Want to cascade two blocks: Vin

R2

R1 + R2
Av = 10 VoutUmid

R1

R2
Vin

UmidL

9R

R

UmidR

Vout = Vin (1 +
Rtop

Rbottom)Verify:
UmidL =

R2

R1 + R2
Vin

UmidL = UmidR ⇒ Av =
Vout

UmidR
= 10

Example 2:
• Want to cascade two blocks: Vin −3 VoutUmid

Sensor

Rth

Vth

Rs Rf Vout = Vin (−
Rf

Rs)
UmidL

UmidR

Before connection:
UmidL = Vth

Example 2:
• Want to cascade two blocks: Vin −3 VoutUmid

Sensor

Rth

Vth

Rs Rf Vout = Vin (−
Rf

Rs)
UmidL

UmidR

U+ = U− = 0

Before connection:
UmidL = Vth

When connected:

I

I =
Vth − 0
Rth + Rs

UmidL

UmidL =
Rs

Rth + Rs
Vth ≠ Vth

Example 2:
• Want to cascade two blocks: Vin −3 VoutUmid

Sensor

Rth

Vth

Rs Rf Vout = Vin (−
Rf

Rs)
UmidL

UmidR

Buffer:

U+ = U− = 0Vth = UmidL

⇒ UmidL = UmidR

⇒ Vout = Vin (−
3R
R)

Design Procedure
Step 1 (Specification): Concretely restate the goals for the design.

Frequently, a design prompt will include a lot of text, so we’d like to restate all of the most important
features of our design. We’ll refer to these specifications later to determine if our design is complete.

Step 2 (Strategy): Describe your strategy (often in the form of a block diagram) to achieve your goal.
To do this, start by thinking about what you can measure vs. what you want to know.

Convert touch to capacitanceTouch/no touch Convert capacitance to voltage Voltage

Step 3 (Implementation): Implement the components described in your strategy. This is where
pattern matching is useful: remind yourself of blocks you know, (ex. voltage divider, inverting
amplifier) and check if any of these can be used to implement steps of your strategy.

Design Procedure

Step 4 (Verification): Check that your design from Step 3 does what you specified in Step 1.
Check block-to-block connections, as these are the most common point for problems.
Does one block load another block causing it to behave differently than expected?
Are there any contradictions (ex. a voltage source with both ends connected by a wire, or a current
source directed into an open circuit)?

Example 3
Your boss comes to you as asks you to build a countdown timer that will turn on a Light Emitting Diode (LED) two
seconds after a button is pressed. She tells you that the LED will emit light when 2V is applied across it.

Step 1 (Specification):

Step 2 (Strategy): Describe your strategy

Build a circuit that measures 2s after a button is pressed, then applies 2V across an LED. (Assume
button is pressed only once.

Turn on timerPush button Timer 2s≥ Apply 2V

Step 3 (Implementation): Implement the components described in your strategy

Turn on circuit? :

Timer:
C +

−VCIS

Ic = C
dVC

dt

Vc(t) =
Is

C
t + Vc(0)

:≥

Together:
IS Vtime

Step 4 Verify:

Q: Why is this a problem?
IS

Revise:

IS Vtime

IS Vtime

Before button is pushed, the switch is on

Vtime = ?

U1 = 0IC

Isw

U1

Vtime = U1 = 0

IC = C
dVtime

dt
= 0

KCL:

IS = Isw + IC

IS = Isw

IS Vtime

After button is pushed, the switch is off

@t = t0

IC

Isw

U1

Vtime(t0) = 0

Vtime(t) =
IS

C
(t − t0) + 0

IS Vtime

Vtime(t + 2) = Vref

