

Welcome to EECS 16A! Designing Information Devices and Systems I

Ana Arias and Miki Lustig

Lecture 10A Design Procedure and Examples

Today

- Neurons in our brain are interconnected.
- The output of a single-neuron is dependent on inputs from several other neurons.
- This idea is represented with vector-vector multiplication the output is a linear combination of several inputs.
- An artificial neuron circuit must perform addition and multiplication.

Q: All weights are negative. How can we change sign?A: Add an inverting amp circuit?

Q: All weights are negative. How can we change sign?

Q: Can we add an inverting amp circuit?

Q: All weights are negative. How can we change sign?

Q: Can we add an inverting amp circuit? Ry A: Not always.... But perhaps here is OK. Q: What's the requirement on Rth? A: Rth = 0?

Q: All weights are negative. How can we change sign?

Q: Can we add an inverting amp circuit? I_{+} Ry R_3 R_1 u_{-} A: Not always.... But perhaps here is OK. v_1 R_2 Q: What's the requirement on Rth? VCUS A: Rth = 0? v_2

Cascading blocks

Safely cascading circuit modules

Want to blocks f }, and g } to keep their functionality without g } affecting f } and vice versa.

Cascading blocks

Safely cascading circuit modules

Want to blocks f }, and g } to keep their functionality without g } affecting f } and vice versa.

Cascading blocks

Safely cascading circuit modules

Want to blocks f }, and g } to keep their functionality without g } affecting f } and vice versa.

After connection: $U_{\text{midL}} = U_{\text{midR}} = V_{\text{DAC}}$

Buffer / Unity Gain Amplifier

From perspective of block f }: See open circuit $R_{\rm th} =$

From perspective of block $g\{\}$: See a voltage source

$$R_{\rm th} =$$

Unity Gain Buffer

Safely cascading circuit modules

$$U^{+} = V_{in}$$
$$U^{-} = V_{out}$$
$$NFB \Rightarrow Golden Rule #2 \Rightarrow U^{-} = U^{+}$$
$$V_{in} = V_{out}$$

Example 1:

Example 1:

Example 2:

Before connection:

 $U_{\rm midL} = V_{\rm th}$

Example 2:

Example 2:

Design Procedure

Step 1 (Specification): Concretely restate the goals for the design.

Frequently, a design prompt will include a lot of text, so we'd like to restate all of the most important features of our design. We'll refer to these specifications later to determine if our design is complete.

Step 2 (**Strategy**): Describe your strategy (often in the form of a block diagram) to achieve your goal. To do this, start by thinking about what you can measure vs. what you want to know.

Step 3 (**Implementation**): Implement the components described in your strategy. This is where pattern matching is useful: remind yourself of blocks you know, (ex. voltage divider, inverting amplifier) and check if any of these can be used to implement steps of your strategy.

Design Procedure

Step 1 (Specification): Concretely restate the goals for the design.

Frequently, a design prompt will include a lot of text, so we'd like to restate all of the most important features of our design. We'll refer to these specifications later to determine if our design is complete.

Step 2 (**Strategy**): Describe your strategy (often in the form of a block diagram) to achieve your goal. To do this, start by thinking about what you can measure vs. what you want to know.

Step 3 (**Implementation**): Implement the components described in your strategy. This is where pattern matching is useful: remind yourself of blocks you know, (ex. voltage divider, inverting amplifier) and check if any of these can be used to implement steps of your strategy.

Step 4 (**Verification**): Check that your design from Step 3 does what you specified in Step 1. Check block-to-block connections, as these are the most common point for problems. Does one block load another block causing it to behave differently than expected? Are there any contradictions (ex. a voltage source with both ends connected by a wire, or a current source directed into an open circuit)?

Example 3

Your boss comes to you as asks you to build a countdown timer that will turn on a Light Emitting Diode (LED) two seconds after a button is pressed. She tells you that the LED will emit light when 2V is applied across it.

Step 1 (Specification):

Build a circuit that measures 2s after a button is pressed, then applies 2V across an LED. (Assume button is pressed only once.

Step 2 (Strategy): Describe your strategy

Step 3 (Implementation): Implement the components described in your strategy

Step 4 Verify:

Revise:

Q: Why is this a problem?

Before button is pushed, the switch is <u>on</u>

$$V_{\text{time}} = ?$$

$$U_1 = 0$$

$$V_{\text{time}} = U_1 = 0$$

$$I_C = C \frac{dV_{\text{time}}}{dt} = 0$$

KCL:

 $I_{S} = I_{sw} + I_{C}$ $I_{S} = I_{sw}$

After button is pushed, the switch is off