

Announcements

Learning Goals

Not a survey class - rigorous and deep

EECS 16A

- Module 1: Introduction to systems
- How do we collect data? build a model?
- Module 2: Introduction to circuits and design

- How do we use a model to solve a problem
- Module 3: Introduction Signal Processing and Machine Learning
- How do we "learn" models from data, and make predictions?

EECS 16B

- Module 4: Advanced circuit design / analysis
- Module 5: Introduction to control and robotics
- Module 6: Introduction to data analysis and signal processing

16A Lab Examples

This module

- Classification
- Example: How can you tell if a picture is Miki or Ana
- Estimation
- For example, how to estimate model parameters from data
- Prediction
- How to predict stocks value tomorrow based on [past performance

Example: GPS

I//

GPS

- 24 satellites
- Known position
- Time synchronized
- 8 usually visible
- Problem:
- Classify which satellite is transmitting
- Estimate distance to GPS
- Estimate position from noisy data
- Tools:
- Inner product
- Cross correlation
- Least Squares

From Kris Pister:

Problem 1: Classification

- Satellites transmit a unique code
- Radio signal
- Signal is received and digitized by a receiver

Q: Which satellite was received?

Inner Product

- Provide a measure of "similarity" between vectors
- Definition: For a real-valued vector space, \mathbb{V}, the mapping

$$
\vec{u}, \vec{v} \in \mathbb{V} \quad \rightarrow \quad<\vec{u}, \vec{v}>\in \mathbb{R}
$$

is called an inner product if it satisfies:

1. Symmetry: $\langle\vec{u}, \vec{v}\rangle=\langle\vec{v}, \vec{u}\rangle$ (not true for $\mathbb{V} \in \mathbb{C}^{N}$)
2. Linearity: $\langle\alpha \vec{u}, \vec{v}\rangle=\alpha\langle\vec{u}, \vec{v}\rangle \quad \alpha \in \mathbb{R}$

$$
\langle\vec{u}+\vec{w}, \vec{v}\rangle=\langle\vec{u}, \vec{v}\rangle+\langle\vec{w}, \vec{v}\rangle
$$

3. Positive-definitness:

$$
<\vec{v}, \vec{v}>\geq 0
$$

Inner Products

Example 1: Euclidean inner product (or dot product)

$$
\vec{x}, \vec{y} \in \mathbb{R}^{N}, \quad<\vec{x}, \vec{y}>=\vec{x}^{T} \vec{y}
$$

Example 1: Euclidean inner product

$$
\vec{x}, \vec{y} \in \mathbb{R}^{N}, \quad\langle\vec{x}, \vec{y}\rangle=\vec{x}^{T} \vec{y}
$$

Test:
Symmetry:

$$
\begin{align*}
& <\vec{x}, \vec{y}>=\vec{x}^{T} \vec{y} \tag{0}\\
& <\vec{y}, \vec{x}>=\vec{y}^{T} \vec{x}
\end{align*}
$$

Linearity $<a \vec{x}, \vec{y}\rangle=(a \vec{x})^{T} \vec{y}=a \vec{x}^{T} \vec{y}$

$$
<\vec{x}+\vec{z}, \vec{y}>=(\vec{x}+\vec{z})^{T} \vec{y}=\vec{x}^{T} \vec{y}+\vec{z}^{T} \vec{y}
$$

Positive Definitness

$$
<\vec{x}, \vec{x}>=\vec{x}^{T} \vec{x}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2} \geq 0
$$

Example 2: Weighted Inner Product

$\vec{x}, \vec{y} \in \mathbb{R}^{N}, Q \in \mathbb{R}^{N \times N}$ symmetric with positive eigenvalues
Define:

$$
<\vec{x}, \vec{y}>=\vec{x}^{T} Q \vec{y}
$$

Specific example:

$$
Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \quad \vec{x}, \vec{y} \in \mathbb{R}^{2}
$$

Symmetry:

$$
\begin{aligned}
& \vec{x}^{T} Q \vec{y}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & 3 x_{2}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=x_{1} y_{1}+3 x_{2} y_{2} \\
& \vec{y}^{T} Q \vec{x}=\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{1} & 3 y_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1} y_{1}+3 x_{2} y_{2}
\end{aligned}
$$

Example 2: Weighted Inner Product

Specific example:

$$
Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \quad \vec{x}, \vec{y} \in \mathbb{R}^{2}
$$

Symmetry:

$$
\begin{aligned}
& \vec{x}^{T} Q \vec{y}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & 3 x_{2}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=x_{1} y_{1}+3 x_{2} y_{2} \\
& \vec{y}^{T} Q \vec{x}=\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{1} & 3 y_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1} y_{1}+3 x_{2} y_{2}
\end{aligned}
$$

Linearity: obvious!
Positive Definitness:

$$
\overrightarrow{x^{T}} Q \vec{x}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}^{2}+3 x_{2}^{2} \geq 0
$$

Norms

- For each inner product there's an associated norm
- A measure of a length of elements in the vector space

$$
\|\vec{v}\|=\sqrt{\langle\vec{v}, \vec{v}\rangle}
$$

- Properties of norms:

1. Homogeneity

$$
\|\alpha \vec{v}\|=|\alpha|\|\vec{v}\|
$$

$\alpha \in \mathbb{R}$
2. Non-negativity $\quad\|\vec{v}\| \geq 0$
3. Triangle Inequality

$$
\|\vec{v}+\vec{u}\| \leq\|v\|+\|u\|
$$

Euclidian Norm

- Euclidean inner-product induces the euclidean norm

$$
\begin{aligned}
& \vec{x} \in \mathbb{R}^{N}, \quad<\vec{x}, \vec{x}>=\vec{x}^{T} \vec{x} \\
& \|\vec{x}\|=\sqrt{\vec{x}^{T} \vec{x}}
\end{aligned}
$$

Specific example:

$$
\begin{aligned}
& \vec{x} \in \mathbb{R}^{2} \\
& \|\vec{x}\|=\sqrt{\vec{x}^{T \vec{x}}}=\sqrt{x_{1}^{2}+x_{2}^{2}}
\end{aligned}
$$

Geometrical Interpretation of Inner Product

$$
\vec{x}=\|\vec{x}\|\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]
$$

Geometrical Interpretation of Inner Product

$$
\vec{x}=\|\vec{x}\|\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right] \quad \vec{y}=\|\vec{y}\|\left[\begin{array}{c}
\cos (\phi) \\
\sin (\phi)
\end{array}\right]
$$

Geometrical Interpretation of Inner Product

$$
\vec{x}=\|\vec{x}\|\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right] \quad \vec{y}=\|\vec{y}\|\left[\begin{array}{c}
\cos (\phi) \\
\sin (\phi)
\end{array}\right]
$$

- For Euclidian inner product:

$$
\begin{aligned}
\vec{x}^{T} \vec{y}= & \|\vec{x}\|\|\vec{y}\|(\cos (\theta) \cos (\phi)+\sin (\theta) \sin (\phi)) \\
& =\|\vec{x}\|\|\vec{y}\| \cos (\phi-\theta) \\
& =\|\vec{x}\|\|\vec{y}\| \cos (\alpha)
\end{aligned}
$$

Geometrical Interpretation of Inner Product

$$
\vec{x}=\|\vec{x}\|\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right] \quad \vec{y}=\|\vec{y}\|\left[\begin{array}{c}
\cos (\phi) \\
\sin (\phi)
\end{array}\right]
$$

- For Euclidian inner product:

$$
\begin{aligned}
\vec{x}^{T} \vec{y}= & \|\vec{x}\|\|\vec{y}\|(\cos (\theta) \cos (\phi)+\sin (\theta) \sin (\phi)) \\
& =\|\vec{x}\|\|\vec{y}\| \cos (\phi-\theta) \\
& =\|\vec{x}\|\|\vec{y}\| \cos (\alpha)
\end{aligned}
$$

Orthogonality

- For an inner product $<\cdot, \cdot>$, two vectors \vec{x}, \vec{y} are said to be orthogonal if $\langle\vec{x}, \vec{y}\rangle=0$

$$
\begin{aligned}
<\vec{x}, \vec{y}> & =\|\vec{x}\|\|\vec{y}\| \cos (\alpha) \\
& \Rightarrow \cos (\alpha)=0 \\
& \Rightarrow \alpha=\frac{\pi}{2}
\end{aligned}
$$

Cauchy-Schwarz Inequality

- Consider: $|<\vec{x}, \vec{y}\rangle \mid$

$$
|<\vec{x}, \vec{y}>|=\|\vec{x}\|\|\vec{y}\|| \cos (\alpha)|
$$

Cauchy-Schwarz Inequality

- Consider: $|<\vec{x}, \vec{y}>|$

$$
|<\vec{x}, \vec{y}>|=\|\vec{x}\|\|\vec{y}\|| \cos (\alpha)|
$$

Cauchy-Schwarz Inequality

- Consider: $|<\vec{x}, \vec{y}>|$

$$
|<\vec{x}, \vec{y}>|=\|\vec{x}\|\|\vec{y}\|| \cos (\alpha)|
$$

Problem 1: Classification

- Satellites transmit a unique code
- Radio signal
- Signal is received and digitized by a receiver

Q: Which satellite was received?

Classification

- Q: How to mathematically formulate the classification problem?

$$
\vec{r}=\left[\begin{array}{c}
0.93 \\
-1.1
\end{array}\right] \quad \vec{s}_{1}=\left[\begin{array}{c}
1 \\
1
\end{array}\right] \quad \text { Or? } \quad \vec{s}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Classification

- Q: How to mathematically formulate the classification problem?

$$
\vec{r}=\left[\begin{array}{c}
0.93 \\
-1.1
\end{array}\right] \quad \vec{s}_{1}=\left[\begin{array}{c}
1 \\
1
\end{array}\right] \quad \text { Or? } \quad \vec{s}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Classification

- Q: How to mathematically formulate the classification problem?

$$
\vec{r}=\left[\begin{array}{c}
0.93 \\
-1.1
\end{array}\right] \quad \vec{s}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { Or? } \quad \vec{s}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

- A: Look at the length of the error vector

$$
i^{*}=\underset{i \in\{1,2\}}{\operatorname{argmin}}\left\|\vec{r}-\vec{S}_{i}\right\|
$$

$$
\begin{aligned}
& \text { Classification } \\
& \qquad i^{*}=\underset{i \in\{1,2\}}{\operatorname{argmin}}\left\|\vec{r}-\vec{S}_{i}\right\|^{2} \\
& \left\|\vec{r}-\vec{s}_{i}\right\|^{2}=\left\langle\vec{r}-\vec{s}_{i}, \vec{r}-\vec{s}_{i}\right\rangle \\
& =\left\langle\vec{r}, \vec{r}-\vec{s}_{i}\right\rangle-\left\langle\vec{s}_{i}, \vec{r}-\vec{s}_{i}\right\rangle
\end{aligned}
$$

Classification

$$
i^{*}=\underset{i \in\{1,2\}}{\operatorname{argmin}}\left\|\vec{r}-\vec{S}_{i}\right\|^{2}
$$

$$
\vec{s}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$$
\left\|\vec{r}-\vec{s}_{i}\right\|^{2}=\left\langle\vec{r}-\vec{s}_{i}, \vec{r}-\vec{s}_{i}\right\rangle
$$

$$
\vec{s}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

$$
=\left\langle\vec{r}, \vec{r}-\vec{s}_{i}\right\rangle-\left\langle\vec{s}_{i}, \vec{r}-\vec{s}_{i}\right\rangle
$$

$$
=\langle\vec{r}, \vec{r}\rangle-\left\langle\vec{r}_{,} \vec{s}_{i}\right\rangle-\left\langle\vec{s}_{i}, \vec{r}\right\rangle+\left\langle\vec{s}_{i}, \vec{s}_{i}\right\rangle
$$

$$
=\|\vec{r}\|^{2}+\left\|\vec{s}_{i}\right\|^{2}-2\left\langle\vec{r}, \vec{s}_{i}\right\rangle
$$

Fixed! =2

Classification

$$
\left\|\vec{r}-\vec{s}_{i}\right\|^{2}=\underset{\text { Fixed! }\|\vec{r}\|^{2}}{\|}+\underset{=2}{\left\|\vec{s}_{i}\right\|^{2}}-2\left\langle\vec{r}, \vec{s}_{i}\right\rangle
$$

If $\left\langle\vec{r}, \vec{s}_{i}\right\rangle$ is maximized, then $\left\|\vec{r}-\vec{s}_{i}\right\|^{2}$ is minimized
Classification procedure:

for $i \in\{1,2\}$

compute $\left\langle\vec{r}, \vec{s}_{i}\right\rangle$

$$
\begin{aligned}
& \left\langle\vec{r}, \vec{s}_{1}\right\rangle=-0.17 \\
& \left\langle\vec{r}, \vec{s}_{2}\right\rangle=2.03
\end{aligned}
$$

Return index i the maximizes the above $\quad i^{*}=2$

Localization

- Satellites transmit a unique code
- Radio signal
- Signal is received and digitized by a receiver

Two problems:

1. Interference

2. Timing (next week)

Interference

Possibility 1: Both sats are in TX

$$
\vec{r}=\vec{s}_{1}+\overrightarrow{s_{2}}+\vec{n}
$$

Possibility 2: Only S 1 is in Tx

$$
\vec{r}=\vec{s}_{1}+\vec{n}
$$

Possibility 3: Only S2 is in Tx

$$
\vec{r}=\vec{s}_{2}+\vec{n}
$$

Possibility 4: None is in Tx

$$
\vec{r}=\vec{n}
$$

Interference

Possibility 1: Both sars are in TX

$$
\vec{r}=\vec{s}_{1}+\overrightarrow{s_{2}}+\vec{n}
$$

$$
\left\langle\vec{r}, \vec{s}_{1}\right\rangle=\left\langle\vec{s}_{1}+\vec{s}_{2}+\vec{n}, \vec{s}_{1}\right\rangle
$$

$$
=\left\langle\vec{s}_{1}, \vec{s}_{1}\right\rangle+\left\langle\vec{s}_{2}, \vec{s}_{1}\right\rangle+\langle\overrightarrow{\text { small }}\rangle
$$

Desired Interference

Q: How to design codes that don't interfere?

A: Make them orthogonal!

$$
\left\langle\vec{s}_{2}, \vec{s}_{1}\right\rangle=0
$$

GPS Gold Codes

Example:

$$
\left\langle\vec{r}, \vec{S}_{i}\right\rangle=\vec{r} T \vec{S}_{i}
$$

