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Good morning!
Last time: 
• Talked about GPS

- Known position of satellites

- Each satellite has its own signature


• Talked about inner product

- Measure of similarity between vectors

- When zero — orthogonal vectors


• Talked about using inner products for classification

Today: 
• Computing delay with cross-correlation 

• Finding position with multi-lateration



Announcements
Special Topic Joint EECS 16A & 16B Lecture by Jared Zerbe, 
Engineering Director at Apple
We are organizing a special topic lecture for EECS 16A and 16B about hardware design by one of Apple's chip design veterans. 
Please join us and ask Jared some tough questions.

Special Topic Joint EECS 16A & 16B Lecture:
System-on-Chip Design - aka “what is in the future for me if I continue in hardware”
by Jared Zerbe, Engineering Director at Apple

Time/Date: 5-6:30pm on 11/17/2021
Zoom link: https://berkeley.zoom.us/j/98986312535

Abstract:
System on Chip “SoC” designs are complex systems built in silicon, and the heart of computing systems these days. In this talk 
we’ll go through some of the interesting challenges facing these designs, and how some of the tradeoffs are made in modern SoCs. 
This should be apropos for 16A/16B students wondering “what is in the future for me if I continue in hardware”. And you never know 
when your professors might sneak an exam question in from a guest lecture like this...

Bio:
Jared Zerbe received the B.S. degree in electrical engineering from Stanford University, Stanford, CA, in 1987. From 1987-1992 he 
worked at VLSI Technology and MIPS Computer Systems, where he designed high-performance floating-point units, and for over 
20 years at Rambus he specialized in the design of high-speed I/O, PLL/DLL clock-recovery, and data-synchronization circuits. He 
has taught courses at both Berkeley and Stanford in high-speed I/O design and authored or co-authored over 40 IEEE conference 
and journal papers*, and is inventor of over 220 patents*. He served on the program committee for DesignCon and VLSI Circuits 
Symposium from 2010-2013 and was an associate editor for the Journal of Solid State Circuits from 2013-2014.  In 2013 he joined 
Apple Inc. where since 2015 he has been Apple’s Exploratory Design group and is currently an Engineering Director. Jared was 
named an IEEE Fellow in 2019 for contributions to the development of high performance serial interfaces.

https://berkeley.zoom.us/j/98986312535


Example: GPS



GPS
• 24 satellites

- Known position

- Time synchronized

- 8 usually visible


• Problem:

- Classify which satellite is transmitting

- Estimate distance to GPS

- Estimate position from noisy data


• Tools:

- Inner product

- Cross correlation

- Least Squares



• Satellites transmit a unique code

- Radio signal 


• Signal is received and digitized 
by a receiver

Localization

1 2

1

1

1 2

-1

TX:  [1
1]

TX:  [ 1
−1]

Two problems:

1. Interference

2. Timing (Next!)



Interference

1 2

1

1

1 2

-1

S1 TX:  [1
1]

S2 TX:  [ 1
−1]

Possibility 1: Both sats are in TX

Possibility 2: Only S1 is in Tx 

Possibility 3: Only S2 is in Tx 

Possibility 4: None is in Tx 

⃗r = ⃗s1 + ⃗s2+ ⃗n

⃗r = ⃗s1+ ⃗n

⃗r = ⃗s2+ ⃗n

⃗r = ⃗n



Interference

1 2

1

1

1 2

-1

S1 TX:  [1
1]

S2 TX:  [ 1
−1]

Possibility 1: Both sats are in TX
⃗r = ⃗s1 + ⃗s2+ ⃗n

⟨ ⃗r, ⃗s1⟩ = ⟨ ⃗s1 + ⃗s2+ ⃗n , ⃗s1⟩
= ⟨ ⃗s1, ⃗s1⟩+⟨ ⃗s2, ⃗s1⟩+⟨ ⃗n , ⃗s1⟩Small

Desired Interference
Q: How to design codes that don’t interfere?
A: Make them orthogonal! ⟨ ⃗s2, ⃗s1⟩ = 0



GPS Gold Codes
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Example:
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⃗r =

⟨ ⃗r, ⃗si⟩ = ⃗rT ⃗si
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• Satellites transmit a (modulated) 
unique code

- Radio signal 


• Signal is received (demodulated) 
and digitized by a receiver

Timing….

TX:  
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Amplitude Modulation (AM)

Phase Modulation (PM)



• Satellites transmit a unique code

- Radio signal 


• Signal is received and digitized 
by a receiver

Timing….

TX:  

1
1
1

−1
1

1 2

1

3 4 5

1 2

1

3 4 5 6 7 8

Distance: 3[ms] × C ≈ 900[km]



“Pattern Matching” of Signals

1 2

1

3 4 5 6 7 8

Problem: vectors (signals) not the same length… , ⃗r ∈ ℝ9 ⃗s ∈ ℝ5

Solution: Define infinite signals  by zero-paddingr[n], s[n]

0

1 2

1

3 40

⇒ r[n] = {rn 0 ≤ n ≤ 8
0 elsewhere⃗r = [r0 r1 r2 ⋯ r8]T

⃗s = [s0 s1 s2 ⋯ s4]T ⇒ s[n] = {sn 0 ≤ n ≤ 4
0 elsewhere



“Pattern Matching” of Signals
1

Problem: vectors (signals) not the same length… , ⃗r ∈ ℝ9 ⃗s ∈ ℝ5

Solution: Define infinite signals  by zero-paddingr[n], s[n]

1

41 2 30 5 6 7 8 9 10 11-2 -1

41 2 30 5 6 7 8 9 10 11-2 -1

r[n]

s[n]

⇒ r[n] = {rn 0 ≤ n ≤ 8
0 elsewhere⃗r = [r0 r1 r2 ⋯ r8]T

⃗s = [s0 s1 s2 ⋯ s4]T ⇒ s[n] = {sn 0 ≤ n ≤ 4
0 elsewhere



“Pattern Matching” of Signals
1

1

41 2 30 5 6 7 8 9 10 11-2 -1

41 2 30 5 6 7 8 9 10 11-2 -1

r[n]

s[n]

⟨r[n], s[n]⟩ =
∞

∑
n=−∞

r[n]s[n] =
7

∑
n=0

r[n]s[n] =



“Pattern Matching” of Signals
1

1

41 2 30 5 6 7 8 9 10 11-2 -1

41 2 30 5 6 7 8 9 10 11-2 -1

r[n]

s[n]

⟨r[n], s[n]⟩ =
∞

∑
n=−∞

r[n]s[n] =
7

∑
n=0

r[n]s[n] =
0,0,0,1,1,1,-1,1 1 

1 
1 
-1 
1 
0 
0 
0

= 0

Q: How to match with shifted version?

A: compute:  ⟨r[n], s[n − 1]⟩ =
∞

∑
n=−∞

r[n]s[n − 1]



“Pattern Matching” of Signals
1

1

41 2 30 5 6 7 8 9 10 11-2 -1

41 2 30 5 6 7 8 9 10 11-2 -1

r[n]

s[n]

⟨r[n], s[n−1]⟩ =
∞

∑
n=−∞

r[n]s[n−1]



“Pattern Matching” of Signals
1

1

41 2 30 5 6 7 8 9 10 11-2 -1

41 2 30 5 6 7 8 9 10 11-2 -1

r[n]

s[n]

⟨r[n], s[n−1]⟩ =
∞

∑
n=−∞

r[n]s[n−1] = 1corr ⃗r( ⃗s)[1] =



“Pattern Matching” of Signals
1

1

41 2 30 5 6 7 8 9 10 11-2 -1

41 2 30 5 6 7 8 9 10 11-2 -1

r[n]

s[n]

⟨r[n], s[n−1]⟩ =
∞

∑
n=−∞

r[n]s[n−1] = 1corr ⃗r( ⃗s)[1] =

1
41 2 30 5 6 7 8 9 10 11-2 -1

2

5



“Pattern Matching” of Signals
1

1

41 2 30 5 6 7 8 9 10 11-2 -1

41 2 30 5 6 7 8 9 10 11-2 -1

r[n]

s[n]

⟨r[n], s[n−2]⟩ =
∞

∑
n=−∞

r[n]s[n−2] = 0corr ⃗r( ⃗s)[2] =

1
41 2 30 5 6 7 8 9 10 11-2 -1

2

5



“Pattern Matching” of Signals
1

1

41 2 30 5 6 7 8 9 10 11-2 -1

41 2 30 5 6 7 8 9 10 11-2 -1

r[n]

s[n]

⟨r[n], s[n−3]⟩ =
∞

∑
n=−∞

r[n]s[n−3] = 5corr ⃗r( ⃗s)[3] =

1
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“Pattern Matching” of Signals
1

1

41 2 30 5 6 7 8 9 10 11-2 -1

41 2 30 5 6 7 8 9 10 11-2 -1

r[n]

s[n]

⟨r[n], s[n−4]⟩ =
∞

∑
n=−∞

r[n]s[n−4] = 0corr ⃗r( ⃗s)[4] =
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“Pattern Matching” of Signals
1

1
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41 2 30 5 6 7 8 9 10 11-2 -1

r[n]

s[n]

⟨r[n], s[n−5]⟩ =
∞

∑
n=−∞

r[n]s[n−5] = 1corr ⃗r( ⃗s)[5] =

1
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“Pattern Matching” of Signals
1

1
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41 2 30 5 6 7 8 9 10 11-2 -1

r[n]

s[n]

⟨r[n], s[n−6]⟩ =
∞

∑
n=−∞

r[n]s[n−6] = 0corr ⃗r( ⃗s)[6] =

1
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“Pattern Matching” of Signals
1

1

41 2 30 5 6 7 8 9 10 11-2 -1

41 2 30 5 6 7 8 9 10 11-2 -1

r[n]

s[n]

⟨r[n], s[n−7]⟩ =
∞

∑
n=−∞

r[n]s[n−7] = 1corr ⃗r( ⃗s)[7] =

1
41 2 30 5 6 7 8 9 10 11-2 -1

2

5



“Pattern Matching” of Signals
1

1

41 2 30 5 6 7 8 9 10 11-2 -1

41 2 30 5 6 7 8 9 10 11-2 -1

r[n]

s[n]

⟨r[n], s[n + 1]⟩ =
∞

∑
n=−∞

r[n]s[n + 1]= 1corr ⃗r( ⃗s)[−1] =

1
41 2 30 5 6 7 8 9 10 11-2 -1

2

5



Cross Correlation
⟨r[n], s[n−k]⟩ =

∞

∑
n=−∞

r[n]s[n−k]corr ⃗r( ⃗s)[k] =

1
41 2 30 5 6 7 8 9 10 11-2 -1

2

5

corr ⃗r( ⃗s)[k]k* =
k

argmax

k* = 3



Cross Correlation Properties

• If , and , then the length of  is 

• 

•  is called auto-correlation

⃗x ∈ ℝN ⃗y ∈ ℝM corr ⃗x ( ⃗y ) N + M − 1
corr ⃗x ( ⃗y ) ≠ corr ⃗y ( ⃗x )
corr ⃗x ( ⃗x )



Periodic Signals
• Satellites repeat the codes over and over

- Cross correlation is “periodically 

expanded” instead of zero-padded

- Result is periodic

TX:  

1
1
1

−1
1

1



• Satellites transmit a unique code

- Radio signal 


• Signal is received and digitized 
by a receiver

Localization

Two problems:

1. Interference

2. Timing


What are good properties for the codes ⃗si



Received Signal

r[n] = s1[n − τ1] + s2[n − τ2] + w[n]
Correlate with :s1[n]

corr ⃗r( ⃗s1)[k] = ⟨r[n], s1[n − k]⟩
= ⟨s1[n − τ1], s1[n − k]⟩+ ⟨s2[n − τ2], s1[n − k]⟩+ ⟨w[n], s1[n − k]⟩
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Auto-correlation looks like an impulse
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cross-correlation with noise is small 
(always true)



Received Signal

r[n] = s1[n − τ1] + s2[n − τ2] + w[n]

1500 2000 2500 3000 3500 4000

0
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1000

⟨r[n], s2[n − k]⟩
⟨r[n], s1[n − k]⟩

τ2

τ1

0



Trilateration

d1 = τ1C
d2 = τ2C
d3 = τ3C

⃗x
d1

⃗a 1 ⃗a 2
d2

⃗a 3

d3

∥ ⃗x − ⃗a 1∥2 = d2
1(1)

∥ ⃗x − ⃗a 2∥2 = d2
2(2)

∥ ⃗x − ⃗a 3∥2 = d2
3(3)



Trilateration

d1 = τ1C
d2 = τ2C
d3 = τ3C

⃗x
d1

⃗a 1 ⃗a 2
d2

⃗a 3

d3

∥ ⃗x − ⃗a 1∥2 = d2
1(1)

∥ ⃗x − ⃗a 2∥2 = d2
2(2)

∥ ⃗x − ⃗a 3∥2 = d2
3(3)



Trilateration

d1 = τ1C
d2 = τ2C
d3 = τ3C

⃗x
d1

⃗a 1 ⃗a 2

⃗a 3

d2

d3

∥ ⃗x − ⃗a 1∥2 = d2
1

∥ ⃗x − ⃗a 1∥2 = d2
1

( ⃗x − ⃗a 1)T( ⃗x − ⃗a1) = d2
1

⃗x T ⃗x − ⃗a T
1 ⃗x − ⃗x T ⃗a 1 + ⃗a T

1 ⃗a 1 = d2
1

∥ ⃗x ∥2 − 2 ⃗a T
1 ⃗x + ∥ ⃗a 1∥2 = d2

1
∥ ⃗x ∥2 − 2 ⃗a T

1 ⃗x + ∥ ⃗a 1∥2 = C2τ2
1

(1)

∥ ⃗x − ⃗a 2∥2 = d2
2

∥ ⃗x − ⃗a 3∥2 = d2
3

(2)

(3)



Trilateration

d1 = τ1C
d2 = τ2C
d3 = τ3C

⃗x
d1

⃗a 1 ⃗a 2

⃗a 3

d2

d3

∥ ⃗x − ⃗a 1∥2 = d2
1

∥ ⃗x − ⃗a 2∥2 = d2
2

∥ ⃗x − ⃗a 3∥2 = d2
3

∥ ⃗x ∥2 − 2 ⃗a T
1 ⃗x + ∥ ⃗a 1∥2 = C2τ2

1

(1)

(2)

(3)

(1)

∥ ⃗x ∥2 − 2 ⃗a T
2 ⃗x + ∥ ⃗a 2∥2 = C2τ2

2(2)

∥ ⃗x ∥2 − 2 ⃗a T
3 ⃗x + ∥ ⃗a 3∥2 = C2τ2

3(3)



Trilateration

⃗x
d1

⃗a 1 ⃗a 2

⃗a 3

d2

d3

∥ ⃗x ∥2 − 2 ⃗a T
1 ⃗x + ∥ ⃗a 1∥2 = C2τ2

1
∥ ⃗x ∥2 − 2 ⃗a T

2 ⃗x + ∥ ⃗a 2∥2 = C2τ2
2

∥ ⃗x ∥2 − 2 ⃗a T
3 ⃗x + ∥ ⃗a 3∥2 = C2τ2

3

(1)

(2)

(3)

(1)(2) - 



Trilateration

⃗x
d1

⃗a 1 ⃗a 2

⃗a 3

d2

d3

∥ ⃗x ∥2 − 2 ⃗a T
1 ⃗x + ∥ ⃗a 1∥2 = C2τ2

1
∥ ⃗x ∥2 − 2 ⃗a T

2 ⃗x + ∥ ⃗a 2∥2 = C2τ2
2

∥ ⃗x ∥2 − 2 ⃗a T
3 ⃗x + ∥ ⃗a 3∥2 = C2τ2

3

(1)

(2)

(3)

(1)(2) - 
−2 ⃗a T

2 ⃗x + 2 ⃗a T
1 ⃗x + ∥ ⃗a 2∥2 − ∥ ⃗a 1∥2 = C2(τ2

2 − τ2
1)

2( ⃗a 1 − ⃗a 2)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(τ2
2 − τ2

1)
(1)(3) - 

2( ⃗a 1 − ⃗a 3)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 3∥2 + C2(τ2
3 − τ2

1)



Trilateration

⃗x
d1

⃗a 1 = [a11, a12]T

d2

d3

2( ⃗a 1 − ⃗a 2)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(τ2
2 − τ2

1)
2( ⃗a 1 − ⃗a 3)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 3∥2 + C2(τ2

3 − τ2
1)

⃗a 3 = [a31, a32]T

⃗a 2 = [a21, a22]T

=



Trilateration

⃗x
d1

⃗a 1 = [a11, a12]T

d2

d3

2( ⃗a 1 − ⃗a 2)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(τ2
2 − τ2

1)
2( ⃗a 1 − ⃗a 3)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 3∥2 + C2(τ2

3 − τ2
1)

⃗a 3 = [a31, a32]T

⃗a 2 = [a21, a22]T

Solve via gaussian elimination!



Trilateration

⃗x
d1

⃗a 1 = [a11, a12]T

d2

d3

2( ⃗a 1 − ⃗a 2)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(τ2
2 − τ2

1)
2( ⃗a 1 − ⃗a 3)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 3∥2 + C2(τ2

3 − τ2
1)

⃗a 3 = [a31, a32]T

⃗a 2 = [a21, a22]T

Problem — receiver clock is not synced to satellites
 is unknown, but  , and  

are known
τ1 Δτ2 = τ2 − τ1 Δτ3 = τ3 − τ1

2( ⃗a 1 − ⃗a 2)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(τ2 − τ1)(τ2 + τ1)
2( ⃗a 1 − ⃗a 2)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(τ2 − τ1)(τ2 − τ1 + 2τ1)
2( ⃗a 1 − ⃗a 2)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(Δτ2)(Δτ2 + 2τ1)



Trilateration

⃗x
d1

⃗a 1 = [a11, a12]T

d2

d3

2( ⃗a 1 − ⃗a 2)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(τ2
2 − τ2

1)
2( ⃗a 1 − ⃗a 3)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 3∥2 + C2(τ2

3 − τ2
1)

⃗a 3 = [a31, a32]T

⃗a 2 = [a21, a22]T

Problem — receiver clock is not synced to satellites
 is unknown, but  , and  

are known
τ1 Δτ2 = τ2 − τ1 Δτ3 = τ3 − τ1

2( ⃗a 1 − ⃗a 2)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(τ2 − τ1)(τ2 + τ1)
2( ⃗a 1 − ⃗a 2)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(τ2 − τ1)(τ2 − τ1 + 2τ1)
2( ⃗a 1 − ⃗a 2)T ⃗x = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(Δτ2)(Δτ2 + 2τ1)
2( ⃗a 1 − ⃗a 2)T ⃗x − 2C2Δτ2τ1 = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(Δτ2)2

Another variable! Need 1 more equation (satellite)



Trilateration

⃗x
d1

⃗a 1 = [a11, a12]T

d2

d3

⃗a 3 = [a31, a32]T

⃗a 2 = [a21, a22]T

2( ⃗a 1 − ⃗a 2)T ⃗x − 2C2Δτ2τ1 = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(Δτ2)2

2( ⃗a 1 − ⃗a 3)T ⃗x − 2C2Δτ3τ1 = ∥ ⃗a 1∥2 − ∥ ⃗a 3∥2 + C2(Δτ3)2

2( ⃗a 1 − ⃗a 4)T ⃗x − 2C2Δτ4τ1 = ∥ ⃗a 1∥2 − ∥ ⃗a 4∥2 + C2(Δτ4)2

⃗a 4 = [a41, a42]T

d4

=



Trilateration

⃗x
d1

⃗a 1 = [a11, a12]T

d2

d3

⃗a 3 = [a31, a32]T

⃗a 2 = [a21, a22]T

2( ⃗a 1 − ⃗a 2)T ⃗x − 2C2Δτ2τ1 = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(Δτ2)2

2( ⃗a 1 − ⃗a 3)T ⃗x − 2C2Δτ3τ1 = ∥ ⃗a 1∥2 − ∥ ⃗a 3∥2 + C2(Δτ3)2

2( ⃗a 1 − ⃗a 4)T ⃗x − 2C2Δτ4τ1 = ∥ ⃗a 1∥2 − ∥ ⃗a 4∥2 + C2(Δτ4)2

⃗a 4 = [a41, a42]T

d4



Multi-Lateration

⃗x
d1

⃗a 1 = [a11, a12]T

d2

d3

⃗a 3 = [a31, a32]T

⃗a 2 = [a21, a22]T

2( ⃗a 1 − ⃗a 2)T ⃗x − 2C2Δτ2τ1 = ∥ ⃗a 1∥2 − ∥ ⃗a 2∥2 + C2(Δτ2)2

2( ⃗a 1 − ⃗a 3)T ⃗x − 2C2Δτ3τ1 = ∥ ⃗a 1∥2 − ∥ ⃗a 3∥2 + C2(Δτ3)2

2( ⃗a 1 − ⃗a 4)T ⃗x − 2C2Δτ4τ1 = ∥ ⃗a 1∥2 − ∥ ⃗a 4∥2 + C2(Δτ4)2

⃗a 4 = [a41, a42]T

d4

2( ⃗a 1 − ⃗a 5)T ⃗x − 2C2Δτ5τ1 = ∥ ⃗a 1∥2 − ∥ ⃗a 5∥2 + C2(Δτ5)2 d5

⃗a 5 = [a51, a52]T

More equations than unknowns

Q: With noise, equations will be inconsistent!
A: Find closest solution with Least-Squares!


