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Matrix Inverse



Announcements

• Last time: 

- Linear (in)dependance

- Matrix Transformations


• Today:

- Continue with Matrix transformations

- Matrix Inverse

- Vector spaces



Matrix Transformations



Linear Transformation of vectors
: is a linear transformation if: f

f(α ⃗x ) = αf( ⃗x ) α ∈ ℝ
f( ⃗x + ⃗y ) = f( ⃗x ) + f( ⃗y )

Claim: Matrix-vector multiplications satisfy linear transformation

A ⋅ (α ⃗x ) = αA ⃗x
Proof via explicitly writing the elements

A ⋅ ( ⃗x + ⃗y ) = A ⃗x + A ⃗y



Vectors as states, Matrices as state transition

Vectors can represent states of a system

Example: The state of a car at time = t

Q: Is that enough?
A: need orientation or vx(t), vy(t)

θ(t)



Graph Transition Matrices

Example: Reservoirs and Pumps

A

B C

1

1

1

Q: What is the state?
A: Water in each reservoir

⃗x (t) =
xA(t)
xB(t)
xC(t)

Pumps move water…
What would the state be tomorrow?



State Transition Matrices
A

B C

1

1

1



[
1 0 0
0 0 1
0 1 0]

State Transition Matrices
A

B C

1

1

1

xA(t + 1) = xA(t)
xB(t + 1) = xC(t)
xC(t + 1) = xB(t)

Write as a matrix-vector multiplication:

xA(t + 1)
xB(t + 1)
xC(t + 1)

=
xA(t)
xB(t)
xC(t)



State Transition Matrices
A

B C

1

1

1

xA(t + 1) = xA(t)
xB(t + 1) = xC(t)
xC(t + 1) = xB(t)

Write as a matrix-vector multiplication:

or  ⃗x (t + 1) = Q ⃗x (t)

What is the state after 2 times?

⃗x (t + 2) = Q ⃗x (t + 1) = QQ ⃗x (t) = Q2 ⃗x (t)

[
1 0 0
0 0 1
0 1 0]

xA(t + 1)
xB(t + 1)
xC(t + 1)

=
xA(t)
xB(t)
xC(t)



State Transition Matrices
A

B C

1

1

1

xA(t + 1)
xB(t + 1)
xC(t + 1)

= [
1 0 0
0 0 1
0 1 0]

xA(t)
xB(t)
xC(t)

What is the state after at t=1, 2?



State Transition Matrices
A

B C

1

1

1

xA(t + 1)
xB(t + 1)
xC(t + 1)

= [
1 0 0
0 0 1
0 1 0]

xA(t)
xB(t)
xC(t)

What is the state after at t=1, 2?



State Transition Matrices

A

B C

1/2

1/2

1/2



State Transition Matrices

A

B C

1/2

1/2

1/2

Non-conservative!

Q2 =

Q) What will happen if we keep going?
A) Numbers will diminish to zero







State Transition Matrices

A

B C

2

2

2

Q) What will happen if we keep going?
A) Numbers will explode to infinity





Graph Representation
Ex: Reservoirs and Pumps

A

B

C

I have 3 reservoirs: A,B,C 
and I want to keep track of how 
much water is in each 

When I turn on some pumps, water 
moves between the reservoirs.

Where the water moves and what 
fraction is represented by arrows.

1/2half the water in A moves to B 1/2

1/3

Where does the rest of the water in A go? Need to label that too…

1/2
half the water in A stays in A

1/3

1/6

2/3

Can you tell me how much water in each after pumps start? Need to know initial amounts

Nodes

Edges

“directed” graph because 
arrows have a direction

Edge weights



Exercise:

A

B

C

1/2 1/2

1/31/2

1/3

1/6

2/3

A → A B → A C → A

A → B B → B C → B

A → C B → C C → C



Exercise:

A

B

C

1/2 1/2

1/31/2

1/3

1/6

2/3

A → A B → A C → A

A → B B → B C → B

A → C B → C C → C



Example 2:

A

B

C

1/2 1

1/2

1

A → B B → B C → B

A → C B → C C → C

A → A B → A C → A



Example 2:

A

B

C

1/2 1

1/2

1

A → B B → B C → B

A → C B → C C → C

A → A B → A C → A



What about the reverse?

Q) Will flipping the arrows make us go back in time?

A

B

C

1/2 1

1/2

1

A → B B → B C → B

A → C B → C C → C

A → A B → A C → A



What about the reverse?

Q) Will flipping the arrows make us go back in time?

A

B

C

1/2 1

1/2

1

A → B B → B C → B

A → C B → C C → C

A → A B → A C → A

A

B

C

1/2 1

1/2

1



What about the reverse?

Q) Will flipping the arrows make us go back in time?

A

B

C

1/2 1

1/2

1

A → B B → B C → B

A → C B → C C → C

A → A B → A C → A

A

B

C

1/2 1

1/2

1



What about the reverse?

Q) Will flipping the arrows make us go back in time?

A

B

C

1/2 1

1/2

1

A → B B → B C → B

A → C B → C C → C

A → A B → A C → A

A

B

C

1/2 1

1/2

1

4

6

8

6

10

2

=



What about the reverse?

Q) Will flipping the arrows make us go back in time?

A

B

C

1/2 1

1/2

1

A → B B → B C → B

A → C B → C C → C

A → A B → A C → A

A

B

C

1/2 1

1/2

1

4

6

8

6

10

2

=

6

10

2

7

6

10

A) In general, no! 



Matrix Transpose
If the elements of the matrix  are 
The elements of  are 
Matrix transpose is not (generally) an inverse!

A ∈ ℝN×M aij
AT ∈ ℝM×N aji

AT ∈ ℝM×NA ∈ ℝN×M



Matrix Transpose
If the elements of the matrix  are 
The elements of  are 
Matrix transpose is not (generally) an inverse!

A ∈ ℝN×M aij
AT ∈ ℝM×N aji

AT ∈ ℝM×NA ∈ ℝN×M



Matrix Transpose
If the elements of the matrix  are 
The elements of  are 
Matrix transpose is not (generally) an inverse!

A ∈ ℝN×M aij
AT ∈ ℝM×N aji

AT ∈ ℝM×NA ∈ ℝN×M



Matrix Inversion



Matrix Inverse

⃗x (t + 1) = Q ⃗x (t)
Is there a square matrix  such that we can go back in time?P

⃗x (t) = P ⃗x (t + 1)
Yes, if :  PQ = I

P ⃗x (t + 1) = PQ ⃗x (t)
P ⃗x (t + 1) = I ⃗x (t)

⃗x (t + 1) = Q ⃗x (t)
⃗x (t + 1) = QP ⃗x (t + 1)
⃗x (t + 1) = I ⃗x (t + 1)

As consequence :  QP = I



Matrix Inverse - Formal definition

• Definition:  Let  be square matrices.

-  is the inverse of Q if 

P, Q ∈ ℝN×N

P PQ = QP = I

We say that  and P = Q−1 Q = P−1

Q: What about non-square matrices?
A: EECS16B!



Computing the Matrix Inverse

• Want  such that 

- Need: 

P = Q−1 ⃗x (t) = P ⃗x (t + 1)
QP = I

A

B

C

1/2 1

1/2

1

A → B B → B C → B

A → C B → C C → C

A → A B → A C → A

Q



Computing the Matrix Inverse

A

B

C

1/2 1

1/2

1

Need: 

Pose as a linear set of equations. 

Solve with Gaussian Elimination

QP = I



Computing the Matrix Inverse

A

B

C

1/2 1

1/2

1

Need: 

Pose as a linear set of equations. 

Solve with Gaussian Elimination

QP = I

0 1 0
1
2 0 1
1
2 0 0

p11 p12 p13
p21 p22 p23
p31 p32 p33

= [
1 0 0
0 1 0
0 0 1]

PQ I

⃗p 1 ⃗b 1



Computing the Matrix Inverse

A

B

C

1/2 1

1/2

1

Need: 

Pose as a linear set of equations. 

Solve with Gaussian Elimination

QP = I

0 1 0
1
2 0 1
1
2 0 0

p11 p12 p13
p21 p22 p23
p31 p32 p33

= [
1 0 0
0 1 0
0 0 1]

PQ I

⃗p 1 ⃗b 1
⃗p 2 ⃗b 2

⃗p 3 ⃗b 3



Matrix Inverse via Gaussian Elimination

0 1 0 1 0 0
1
2 0 1 0 1 0
1
2 0 0 0 0 1

1
2 0 1 0 1 0
0 1 0 1 0 0
1
2 0 0 0 0 1

1 0 2 0 2 0
0 1 0 1 0 0
1
2 0 0 0 0 1

[
1 0 2 0 2 0
0 1 0 1 0 0
0 0 −2 0 −2 2]

[
1 0 2 0 2 0
0 1 0 1 0 0
0 0 1 0 1 −1]

[
1 0 0 0 0 2
0 1 0 1 0 0
0 0 1 0 1 −1]

Q I

PI



Let’s check

A

B

C

1/2 1

1/2

1

A → B B → B C → B

A → C B → C C → C

A → A B → A C → A 4

6

8

6

10

2

[
0 0 2
1 0 0
0 1 −1]

6

10

2

=



Let’s check

A

B

C

1/2 1

1/2

1

A → B B → B C → B

A → C B → C C → C

A → A B → A C → A 4

6

8

6

10

2

[
0 0 2
1 0 0
0 1 −1]

6

10

2

=

4

6

8

And now we can take any number of steps backwards!



Can we always invert a function?

• Can we always invert a function ….. 


-  ?

-  ?

-  ?

f −1 (f( ⃗x )) = ⃗x ?
f(x) = x2

f(x) = ax
f(x) = Ax



Invertibility of Linear Transformations

• Theorem:   is invertible, if and only if (iff) the columns of  
are linearly independent.


1. If columns of  are lin. dep. then  does not exist

2. If  exists, then the cols. of  are linearly independent

A A

A A−1

A−1 A
Proof concept: Assume linear dependence and invertibility and 
show that it is a contradiction
From linear independence:  such that ∃ ⃗α ≠ 0 A ⃗α = 0

A ⃗α = 0
A−1A ⃗α = A−10

I ⃗α = 0
But  ! Hence  does not exist⃗α ≠ 0 A−1

Assume  existsA−1



Inverse of a 2x2 matrix

A = [a b
c d]

A−1 =
1

ad − bc [ d −b
−c a ]

1.Flip  and  
2.Negate  and  
3.Divide by 

a d
b c

ad − bc

Derive via Gauss Elimination!



Equivalent Statements

•Matrix  is invertible

• has a unique solution

•  has linearly independent columns (A is full rank)

•  has a trivial nullspace

•The determinant of  is not zero 

A
A ⃗x = ⃗b
A
A

A



Today (and next time’s) Jargon

• Rank a matrix  is the number of linearly independent columns

• Nullspace of a matrix  is the set of solutions to 

• A vector space is a set of vectors connected by two operators (+,x)

• A vector subspace is a subset of vectors that have “nice properties”

• A basis for a vector space is a minimum set of vectors needed to 

represent all vectors in the space

• Dimension of a vector space is the number of basis vectors

• Column space is the span (range) of the columns of a matrix

• Row space is the span of the rows of a matrix

A
A A ⃗x = 0



• Basis  - 3 times

• Rank - 4 times

• Row space - 4 times

• Columns (of a matrix) - 6 times

• Subspace - 17 times

• Null Space - 29 times

• Eigen - 87 times

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142121/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142121/


Vector Space
• From Merriam Webster:


Definition of vector space
a set of vectors along with operations of addition and multiplication such 
that the set is a commutative group under addition, it includes a 
multiplicative inverse, and multiplication by scalars is both associative and 
distributive



Vector Space
• A vector space, is a set of vectors and scalars ( ) and two 

operators  that satisfy the following:

1. 

2. 

3.   (associativity)

4.  (commutativity)

5.  s.t.   (additive identity)

6.  s.t.   (additive inverse)

7.  (distributivity)

8. 

9. 

10. 

𝕍 ∈ ℝN, 𝔽 ∈ ℝ
⋅ , +

α ⃗x ∈ 𝕍
⃗x + ⃗y ∈ 𝕍
⃗x + ( ⃗y + ⃗z ) = ( ⃗x + ⃗y ) + ⃗z
⃗x + ⃗y = ⃗y + ⃗x

∃ ⃗0 ∈ 𝕍 ⃗x + ⃗0 = ⃗x
∃(− ⃗x ) ∈ 𝕍 ⃗x + (− ⃗x ) = ⃗0
α( ⃗x + ⃗y ) = α ⃗x + α ⃗y
α ⋅ (β ⃗x ) = (αβ) ⋅ ⃗x
(α + β) ⃗x = α ⃗x + β ⃗x
1 ⋅ ⃗x = ⃗x

Axioms of closure

Axioms of addition 
(+)

Axioms of scaling 
( )⋅



Vector Space
• A vector space  is a set of vectors and two 

operators  that satisfy the following:

1. 

2. 

3.   (associativity)

4.  (commutativity)

5.  s.t.   (additive identity)

6.  s.t.  

7.  (distributivity)

8. 

9. 

10. 

𝕍
⋅ , +

α ⃗x ∈ 𝕍
⃗x + ⃗y ∈ 𝕍
⃗x + ( ⃗y + ⃗z ) = ( ⃗x + ⃗y ) + ⃗z
⃗x + ⃗y = ⃗y + ⃗x

∃ ⃗0 ∈ 𝕍 ⃗x + ⃗0 = ⃗x
∃(− ⃗x ) ∈ 𝕍 ⃗x + (− ⃗x ) = ⃗0
α( ⃗x + ⃗y ) = α ⃗x + α ⃗y
α ⋅ (β ⃗x ) = (αβ) ⋅ ⃗x
(α + β) ⃗x = α ⃗x + β ⃗x
1 ⋅ ⃗x = ⃗x

Is  a vector space?ℝ2

Is  ?[a b
c d] ∈ ℝ2×2

Is  ?α ∈ ℝ, α ≥ 0

Is  ?span {[0
1]}

Is  ?[0
1]

Is 0?



Subspaces
• A subspace  consists of a subset of  in vector space ( )


-  and have 3 properties

1. Contains , i.e., 

2. Closed under vector addition: , 

3. Closed under scalar multiplication: , 

𝕌 𝕍 𝕍, 𝔽, + , ⋅
𝕌 ⊂ 𝕍

⃗0 ⃗0 ∈ 𝕌
⃗v 1, ⃗v 2 ∈ 𝕌 ⇒ ⃗v 1 + ⃗v 2 ∈ 𝕌

⃗v 1 ∈ 𝕌, α ∈ 𝔽 ⇒ α ⃗v ∈ 𝕌


