

Announcements

- Last time:
- Vector spaces
- Null spaces
- Subspaces
- Today:
- Computing the determinant
- Eigen Values and Eigen Vectors of a Matrix
- Example via page-rank

Jargon from Last time

- Rank a matrix A is the number of linearly independent columns
- Nullspace of a matrix A is the set of solutions to $A \vec{x}=0$
- A vector space is a set of vectors connected by two operators $(+, x)$
- A vector subspace is a subset of vectors that have "nice properties"
- A basis for a vector space is a minimum set of vectors needed to represent all vectors in the space
- Dimension of a vector space is the number of basis vectors
- Column space is the span (range) of the columns of a matrix
- Row space is the span of the rows of a matrix

Null Space

- Definition: The null-space of $A \in \mathbb{R}^{N \times M}$ is the set of all vectors $\vec{x} \in \mathbb{R}^{M}$ such that: $A \vec{x}=0$

Rank

- $A \in \mathbb{R}^{N \times M}, \operatorname{Rank}\{A\}=\operatorname{dim}\{\operatorname{Span}\{A\}\}$
- $\operatorname{Rank}\{A\}=\operatorname{dim}\{\operatorname{Span}\{A\}\} \leq \min (M, N)$
- Rank $=L$, mean the matrix $A \in \mathbb{R}^{N \times M}$ has L independent rows\&columns
- $\operatorname{Rank}\{A\}+\operatorname{dim}\{\operatorname{Null}\{A\}\}=\min (M, N)$

Equivalent Statements

- Matrix A is invertible
- $A \vec{x}=\vec{b}$ has a unique solution
- A has linearly independent columns (A is full rank)
- A has a trivial nullspace
- The determinant of A is not zero

The Determinant

- For $A \in \mathbb{R}^{2 \times 2}$

$$
\operatorname{det}(A)=\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

When $\operatorname{det}(A) \neq 0, A$ is invertible
Recall:

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Interpretation of Determinant of a Matrix in $\mathbb{R}^{2 \times 2}$

- Area of a parallelogram

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { Area } \neq 0
$$

$$
\operatorname{det}(A)=\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

Interpretation of Determinant of a Matrix in $\mathbb{R}^{2 \times 2}$

- Area of a parallelogram

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { Are } a \neq 0} \\
& {\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \text { Are } a \neq 0}
\end{aligned}
$$

$$
\operatorname{det}(A)=\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

Interpretation of Determinant of a Matrix in $\mathbb{R}^{2 \times 2}$

- Area of a parallelogram

$$
\begin{aligned}
& \text { ogram } \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \operatorname{Area} \neq 0} \\
& {\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \operatorname{det}(A)=\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c} \\
& {\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right] \quad \operatorname{Area}=0}
\end{aligned}
$$

Interpretation of Determinant of a Matrix in $\mathbb{R}^{2 \times 2}$

- Area of a parallelogram

$$
\operatorname{det}(A)=\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

Interpretation of Determinant of a Matrix in $\mathbb{R}^{2 \times 2}$

- Area of a parallelogram

$$
\operatorname{det}(A)=\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

Interpretation of Determinant of a Matrix in $\mathbb{R}^{2 \times 2}$

- Area of a parallelogram

$$
\operatorname{det}(A)=\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

Interpretation of Determinant of a Matrix in $\mathbb{R}^{2 \times 2}$

- Area of a parallelogram

$$
\operatorname{det}(A)=\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

$$
\begin{array}{cc}
c+d\left\{\begin{array}{cc}
\square_{a+b} & (c+d)(a+b) \\
\square \times 2 & b c \times 2 \\
\times 2 & \frac{1}{2} a c \times 2 \\
\times 2 & \frac{1}{2} b d \times 2
\end{array}\right.
\end{array}
$$

$$
\begin{aligned}
\text { area } & =(c+d)(a+b)-2 b c-a c-b d \\
& =q a+\not b+d a+\not b-2 b c-\not b t-b a=a d-b c
\end{aligned}
$$

Determinant in \mathbb{R}^{3}

PageRank

- Ranks websites based on how many high-ranked pages link to them

PageRank

From

©

(3)

PageRank

From

PageRank

From

PageRank

From
(2)

PageRank

From
(2) 3

$$
\begin{aligned}
& \text { PageRank } \\
& \vec{x}(t+1)=\left[\begin{array}{cccc}
0 & 1 / 2 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 1 & 0
\end{array}\right] \vec{x}(t) \\
& \vec{x}(t) \Rightarrow \text { Page ranking } \\
& \vec{x}(0)=\left[\begin{array}{l}
1 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right] \\
& \text { equal Ranking }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PageRank } \\
& \vec{x}(t+1)=\left[\begin{array}{cccc}
0 & 1 / 2 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 1 & 0
\end{array}\right] \vec{x}(t) \\
& \vec{x}(t) \Rightarrow \text { Page ranking } t=1 \\
& \vec{x}(0)=\left[\begin{array}{l}
1 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right] \\
& \text { equal Ranking }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PageRank } \vec{x}(t+1)=\left[\begin{array}{cccc}
0 & 1 / 2 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 1 & 0
\end{array}\right] \vec{x}(t) \\
& \vec{x}(t) \Rightarrow \text { Page ranking }\left[\begin{array}{c}
t=1 \\
0.125 \\
0.208 \\
0.208 \\
0.458
\end{array}\right] \\
& \vec{x}(0)=\left[\begin{array}{l}
1 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right] \\
& \text { equal } \begin{array}{l}
V \text { Ranking }
\end{array}
\end{aligned}
$$

Page Rank

$$
\left[\begin{array}{l}
0.12 \\
0.24 \\
0.24 \\
0.4
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 / 2 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0.12 \\
0.24 \\
0.24 \\
0.4
\end{array}\right], 0.12, \frac{1}{3}
$$

General Steady-state solution

$$
\begin{aligned}
\vec{x}_{\mathrm{ss}} & =Q \cdot \vec{x}_{\mathrm{ss}} \\
Q \cdot \vec{x}_{\mathrm{ss}}-\vec{x}_{\mathrm{ss}} & =\overrightarrow{0} \\
(Q-?) \vec{x}_{\mathrm{ss}} & =\overrightarrow{0} \\
Q \cdot \vec{x}_{\mathrm{ss}}-I \vec{x}_{\mathrm{ss}} & =\overrightarrow{0} \\
(Q-I) \vec{x}_{\mathrm{ss}} & =\overrightarrow{0}
\end{aligned}
$$

The $\operatorname{Null}(Q-I)$ is the steady state solution
Find via Gauss elimination!

Eigen Values

We saw an example for a steady-state vector

$$
Q \cdot \vec{x}_{\mathrm{ss}}=1 \cdot \vec{x}_{\mathrm{ss}}
$$

Direction, and size of the vector did not change!

We will now look at the more general case

$$
Q \cdot \vec{x}=\lambda \cdot \vec{x}
$$

In this case, we say that

$$
\vec{x} \text { is an Eigen Vector of } Q \text { with Eigen Value } \lambda
$$

and $\operatorname{span}\{\vec{x}\}$ is the associated Eigen-space

Eigen Values

$$
Q \cdot \vec{x}=\lambda \cdot \vec{x}
$$

What happens if,
$\lambda=1$?
$\lambda>1$?
$\lambda<1$?

Eigen Values and Eigen Vectors

- Definition: Let $Q \in \mathbb{R}^{N \times N}$ be a square matrix, and ${ }^{*} \lambda \in \mathbb{R}$ if $\exists \vec{x} \neq \overrightarrow{0}$ such that $Q \vec{x}=\lambda \vec{x}$,
then λ is an eigenvalue of Q, \vec{x} is an eigenvector and $\operatorname{Null}(Q-\lambda I)$ is its eigenspace.

Computing eigenvalues and vectors via determinant

Consider :

$$
Q=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
\frac{1}{2} & 1
\end{array}\right] \text {, we want to find } \lambda, \vec{x} \text { such that } Q \vec{x}=\lambda \vec{x} \vec{~} \begin{gathered}
Q \vec{x}-\lambda \vec{x}=\overrightarrow{0} \\
(Q-\lambda I) \vec{x}=\overrightarrow{0}
\end{gathered}
$$

Find $\vec{x} \in \operatorname{Null}(Q-\lambda I):$

Computing eigenvalues and vectors via determinant

Find $\vec{x} \in \operatorname{Null}(Q-\lambda I)$:

$$
Q-\lambda I=\left[\begin{array}{ll}
1 / \Delta-\lambda & 0 \\
1 / L & 1-\lambda
\end{array}\right]
$$

Find λ that results in a non-trivial null space

$$
\operatorname{det}(Q-\lambda I)=0
$$

Characteristic polynomial

$$
(1 / 2-\lambda)(1-\lambda)=0
$$

$$
\lambda_{1}=1 / 2, \lambda_{2}=1
$$

Computing eigenvalues and vectors via determinant

$$
\begin{aligned}
& \text { Find } \vec{x} \in \operatorname{Null}(Q-\lambda I) \text { : } \\
& Q-\lambda I=\left[\begin{array}{cc}
1 / L-\lambda & 0 \\
1 / 2 & 1-\lambda
\end{array}\right] \\
& \text { (1) find } \lambda \quad \lambda_{1}=1 / 2, \lambda_{2}=1 \\
& \text { (2) find } \vec{x} \\
& \lambda_{1}=1 / 2 \\
& {\left[\begin{array}{cc}
1 / 2-1 / 2 & 0 \\
1 / 2 & 1-1 / 2
\end{array}\right] \vec{x}=0} \\
& {\left[\begin{array}{cc}
0 & 0 \\
1 / 2 & 1 / 2
\end{array}\right] \vec{x}=0} \\
& {\left[\begin{array}{cc|c}
1 / 2 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right] \quad x_{1}=-x_{2}} \\
& {\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]^{\mathbb{}} \quad \vec{x}_{1} \in \operatorname{Spon}\left\{\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right\}}
\end{aligned}
$$

Computing eigenvalues and vectors via determinant

$$
\begin{aligned}
& \text { Find } \vec{x} \in \operatorname{Null}(Q-\lambda I) \text { : } \\
& Q-\lambda I=\left[\begin{array}{cc}
1 / L-\lambda & 0 \\
1 / 2 & 1-\lambda
\end{array}\right] \\
& \text { (1) find } \lambda \quad \lambda_{1}=1 / 2, \lambda_{2}=1 \\
& \text { (2) find } \vec{x} \\
& \lambda_{1}=1 / 2 \\
& {\left[\begin{array}{cc}
1 / 2-1 / 2 & 0 \\
1 / 2 & 1-1 / 2
\end{array}\right] \vec{x}=0} \\
& {\left[\begin{array}{cc}
0 & 0 \\
1 / 2 & 1 / 2
\end{array}\right] \vec{x}=0} \\
& {\left[\begin{array}{cc|c}
1 / 2 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right] \quad x_{1}=-x_{2}} \\
& {\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]^{\pi} \quad \vec{x}_{1} \in \operatorname{Spon}\left\{\left(\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}} \\
& \lambda_{2}=1 \\
& {\left[\begin{array}{cc}
1 / 2-1 & 0 \\
1 / 2 & 1-1
\end{array}\right] \vec{x}=0} \\
& {\left[\begin{array}{cc}
-1 / 2 & 0 \\
1 / 2 & 0
\end{array}\right] \vec{x}=0} \\
& {\left[\begin{array}{cc|c}
1 / 2 & 0 & 0 \\
-1 / 2 & 0 & 0
\end{array}\right]} \\
& \vec{x}_{2} \in \operatorname{spon}\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

Eigen-vals/vectors/spaces

$$
Q=\left[\begin{array}{ll}
1 / 2 & 0 \\
1 / 2 & 1
\end{array}\right]
$$

The matrix Q has the Eigen-vector

Associated with eigenvalue $\lambda_{1}=1 / 2$

$$
\vec{v}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right]
$$

$\left[\begin{array}{ll}1 / 2 & 0 \\ 1 / 2 & 1\end{array}\right]\left[\begin{array}{c}2 \\ -2\end{array}\right]=\left[\begin{array}{c}1 / 2 \cdot 2+0(-2) \\ 1 / 2 \cdot 2+1(-2)\end{array}\right]=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

$$
Q \vec{v}=1 / 2 \vec{v}
$$

Eigen-vals/vectors/spaces

The matrix Q has the Eigen-vector

has the Eigen-vector

$$
Q=\left[\begin{array}{ll}
1 / 2 & 0 \\
1 / 2 & 1
\end{array}\right]
$$

又. (5acm (al $)$

eigenspace

Associated with eigenvalue $\lambda_{1}=1 / 2$

$$
\vec{v}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right]
$$

$\left[\begin{array}{ll}1 / 2 & 0 \\ 1 / 2 & 1\end{array}\right]\left[\begin{array}{c}2 \\ -2\end{array}\right]=\left[\begin{array}{c}1 / 2 \cdot 2+0(-2) \\ 1 / 2 \cdot 2+1(-2)\end{array}\right]=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

$$
Q \vec{v}=1 / 2 \vec{v}
$$

$\left[\begin{array}{ll}1 / 2 & 0 \\ 1 / 2 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 2\end{array}\right]=\left[\begin{array}{l}1 / 2 \cdot 0+0(2) \\ 1 / 2 \cdot 0+1 \cdot 2\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]$
$Q \vec{u}=1 \cdot \vec{u}$

How well do you function in a matrixed environment?

* So long as my eigenvalue is always 1 , just fine.

Matrix transformations

What does the matrix do?

What is the A matrix?

What are its eigenvectors?

What are its eigenvalues?

Matrix transformations

What does the matrix do?

What is the A matrix?

What are its eigenvectors?

What are its eigenvalues?

Matrix transformations

What does the matrix do?

What is the A matrix?

What are its eigenvectors?

What are its eigenvalues?

Matrix transformations

What does the matrix do?

What is the A matrix?

What are its eigenvectors?

What are its eigenvalues?

Matrix transformations

What does the matrix do?

What is the A matrix?

What are its eigenvectors?

What are its eigenvalues?

Matrix transformations

For a matrix that flips
(reflects) vectors along a
line:

What is the A matrix?

What are its eigenvectors?

What are its eigenvalues?

