

Welcome to EECS 16A!

Designing Information Devices and Systems I

Ana Claudia Arias and Miki Lustig Fall 2021

Module 2
Lecture 7
Capacitors and Capacitive Touchscreens
(Note 17)

Greetings from Miki \& Ana

Last lecture: Capacitors

- Charge storage device (like a 'bucket' for charge)
- holds electric charge when we apply a voltage across it, and gives up the stored charge to the circuit when voltage removed

Capacitance: C Units: Farads [F]

$$
\text { V equation: } \quad I=C \cdot \frac{d V}{d t}
$$

Circuit Model: IV relationship

$$
Q_{\text {clem }}=C \cdot V_{\text {clem }}
$$

$\left[C^{\hat{1}}\right] \quad[F][V]$
(Farad)
We know: $I_{\text {elem }}=\frac{d Q_{\text {chm }}}{d t}$

$$
I_{\text {elem }}=\left.\frac{d c}{d t} c \cdot V_{\text {elem }}\right|_{c=\begin{array}{c}
\text { constant over } \\
\text { time }
\end{array}} ^{d T}
$$

$$
I_{\text {elem }}=C \cdot \frac{d V_{\text {elem }}}{d t}
$$

Equivalent Circuits with Capacitors

* Capacitor - only circuit

Step 1: find V /h/Ino no source
Step 2: $C_{\text {eq }}=\frac{I_{\text {eq }}}{\frac{d V_{e 1}}{d t}}$

$$
\operatorname{Ceq} \frac{c^{I_{e l}}}{\square}{ }^{-}
$$

a) Apply $I_{\text {test }}$ and measure $\frac{d V_{\text {test }}}{d t}$
b) Apply $\frac{d V_{\text {test }}}{d t}$ and measure $I_{\text {test }}=\frac{I_{\text {test }}}{\frac{d V_{\text {test }}}{d t}}$
(a)

$$
\text { 从 守Iter } \frac{d V_{\text {Est }}}{d t}
$$

(b)

* These are methods for experiments

$$
\begin{aligned}
& V_{C_{1}}=U_{1}, \quad V_{C_{2}}=U_{1} \\
& U_{1}=V_{\text {tett }} \\
& d \frac{U_{1}}{d t}=d \frac{d \text { tatt }}{d t}
\end{aligned}
$$

Elem Deffinition: $I_{c_{1}}=C_{1} \frac{d V_{C_{1}}}{d t}$

$$
\begin{gathered}
I_{C_{2}}=C_{2} \frac{d V_{C_{2}}}{d t} \\
\mathrm{KCL}: I_{\text {tett }}=I_{C_{1}}+I_{C_{2}}=C_{1} \frac{d V_{\text {test }}}{d t}+C_{2} \frac{d V_{\text {test }}}{d t}=\left(C_{1}+C_{2}\right) \frac{d V_{\text {tett }}}{d t}
\end{gathered}
$$

$$
\begin{aligned}
& I_{\text {trst }}=\left(C_{1}+C_{2}\right) \frac{d V_{\text {tsst }}}{d t} \\
& C_{\text {eq }}=\frac{I_{\text {test }}}{\frac{d V_{\text {tst }}}{d t}}=C_{1}+C_{2} \text { parallel }
\end{aligned}
$$

$$
+\frac{U_{1}}{V_{1}} \stackrel{\mathrm{I} c_{1}}{-c_{1}+} \quad I c_{1}=I c_{2}=I_{\text {test }}
$$

$$
\begin{aligned}
& \quad I C_{2}=C_{2} \frac{d V C_{2}}{d t} \\
& I C_{1}=C_{1} \frac{d V C_{1}}{d t} \\
& V_{C_{2}}=U_{2}-0=U_{2} \\
& V_{C_{1}}=U_{1}-U_{2} \\
& V_{\text {tost }}=U_{1}
\end{aligned}
$$

For $V C_{2}: \quad I_{\text {test }}=I c_{2}=C_{2} \frac{d U_{2}}{d t} \Rightarrow \frac{d U_{2}}{d t}=\frac{I_{\text {test }}}{C_{2}}$
For $V_{c_{1}}: \quad I_{c_{1}}=C_{1} \frac{d U_{1}-d U_{2}}{d t} \Rightarrow \frac{I_{c_{1}}}{c_{1}}=\frac{I_{\text {test }}}{c_{1}}=\frac{d U_{1}-d U_{2}}{d t}$

$$
\begin{aligned}
& \frac{d U_{1}}{d t}=\frac{I_{\text {test }}}{C_{1}}+\frac{d U_{2}}{d t} \xrightarrow{\text { subsectute }} \frac{d U_{1}}{d t}=\frac{I_{\text {test }}}{C_{1}}+\frac{I_{\text {toss }}}{C_{2}} \\
& \quad \frac{d V_{\text {test }}}{d t}=I_{\text {test }}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) \\
& C_{\text {eq }}=\frac{I_{\text {tet }}}{\frac{d V_{\text {est }}}{d t}}=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}=C_{1} / / C_{2} \quad \text { series ! }
\end{aligned}
$$

Equivalent capacitors

Capacitors in Series

$$
\mathrm{c}_{2} \frac{\mathrm{~L}}{\mathrm{C}} \underset{\mathrm{C}}{\mathrm{~L}} \rightarrow C_{e q}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$

Capacitors in Parallel

Capacitive Touchscreen - Model without touch

M- metal D-dielectric

$$
\frac{I_{1}^{E_{1}} C_{0}}{E_{2}(g n d)}
$$

$$
C_{0}=\varepsilon \frac{A}{d}
$$

Capacitive Touchscreen - Model with touch

When there is touch, we form a capacitor

$$
\frac{1 \text { finger }}{T \text { conductive }}
$$

Problem: How can we measure V or I if our electrode is a finger?

$$
c_{0} \frac{E_{1}}{{ }_{E_{2}}^{T}} \frac{1}{T} c_{1} / c_{2}=\frac{c_{1} c_{2}}{c_{1}+c_{2}}
$$

With Touch

$$
\begin{aligned}
& C_{0} \frac{I}{T} \frac{c_{1} c_{2}}{c_{1}+c_{2}} \\
& C_{0}+\frac{c_{1} c_{2}}{c_{1}+c_{2}} \quad \frac{c_{1} c_{2}}{C_{1}+c_{2}}=C_{\Delta} \text { (change) }
\end{aligned}
$$

How do we measure change in capacitate).

Option 1:

$$
I_{s} \text { (1) } \frac{1}{T} C_{\text {eq }} V_{\text {out }}
$$

$$
\begin{aligned}
& \text { Assume } \operatorname{Vout~}(0)=0 \\
& I_{s}=C_{\text {eq }} \frac{d V_{\text {out }}(t)}{d t} \rightarrow V_{\text {out }}(t)=\int_{0}^{t} \frac{I_{s}}{C_{\text {eq }}} d t \\
& V_{\text {out }}=\frac{I_{s} \cdot t}{C_{\text {eq }}} \Rightarrow C_{\text {eq }}=\frac{I_{s} \cdot t}{V_{\text {out }}} \begin{array}{l}
\text { Canst build current source } \\
\text { easily }
\end{array}
\end{aligned}
$$

Measuring Capacitance Models - Attempt \#1

If there is tach: Vout $=V_{S}$
If there is no teach: $V_{\text {out }}=V_{S}$ Bad Idea!

Measuring Capacitance Models - Attempt \#2 - add switches and a reference capacitor
 Same as before
(2) phase 1: close S_{1}, open S_{2}

$$
Q=V_{s} \cdot C_{e q}
$$

Measuring Capacitance Models - Attempt \#2 - add switches and a reference capacitor
phase 2: Close S_{2}, open $S 1$

Initial condition?

Charge sharing

Measuring Capacitance Models - Attempt \#3 - known initial condition

Phase 1: S_{1}, S_{3} closed, S_{2} open

- Charge Seq
- Discharge Pref
$Q_{\text {ref }}=C_{\text {ref }} \cdot V_{\text {out }}=0 \quad\left(V_{\text {out }}=0\right)$
$Q_{e q}=C_{e q} \cdot V_{s}$

Measuring Capacitance Models - Attempt \#3 - known initial condition redistribute, until same voltage Phase 2: S_{1}, S_{3} open, S_{2} closed
 Voltage across Seq: Deut Voltage across $C_{\text {ref }}=$ Vout $Q_{\text {total }_{2}}=C_{\text {eq }} \cdot V_{\text {out }}+C_{\text {ref }} \cdot$ Nowt

Effect of touch on total capacitance
Total charge is conserved!!

$$
\begin{aligned}
Q_{\text {total }} & =Q_{\text {total } 2} \\
C_{\text {eq }} \cdot V_{S} & =C_{\text {eq }} \cdot V_{\text {out }}+C_{\text {ref }} \cdot V_{\text {out }} \\
V_{\text {out }} & =\frac{C_{\text {eq }}}{C_{\text {eq }}+C_{\text {eq }}} \cdot V_{s}
\end{aligned}
$$

By touching, we change voltage

Effect of touch on total capacitance

$$
E_{1} \longrightarrow C_{0}^{\text {no touch }} C_{0} \quad V_{\text {out }}=\frac{C_{0}}{C_{0}+C_{\text {ref }}} \cdot V_{s}
$$

How can we go from voltage measurement to binary answer: touch or no touch?

- Threshold Voltage (V+h):
between Vout_touch \& Vout-notach
- Above Vth: 1 (touch)
- Below Nth: 0 (no touch)

We need to compare Vout to $V_{\text {th }}$
So far: $\left\{\left.\frac{1}{1} 1 \right\rvert\, \underset{1}{1} 1\right.$ (4)

How can we go from voltage measurement to binary answer: touch or no touch?

- New tools are needed - new circuit elements

An example of an Op-amp circuit diagram

Schematic diagram of a model 741 op-amp.

Operational Amplifier
An op-amp (operational amplifier) is a device that transforms a small voltage difference into a very large voltage difference.

An op-amp has two input terminals marked (+) and (-) with potentials $U+$ and $U-$, two power supply terminals called VDD and VSS, and one output terminal with potential Uout.

Teal $\rightarrow A=\infty$

Ut connect to Vars
U - connect to V th
VPP, VSS Courts upper \& bower bounds

Comparator - optimized for binary output \& speed

$$
\begin{aligned}
& V_{\text {out }}=V_{D D} \text { if } V^{*}>V_{D D} \\
& V_{\text {out }}=V_{\text {SS }} \text { if } V^{*}<V_{S S}
\end{aligned}
$$

Assume $A=\infty$

Comparator - optimized for binary output

$$
\begin{aligned}
& \text { If } V_{c}(t)>V_{\text {th }}, V_{\text {out }}=V_{D D} \\
& \text { If } V_{c}(t) \leq V_{\text {th }}, V_{\text {out }}=V_{S S}
\end{aligned}
$$

Back to our Capacitive Touchscreen

Enjoy Spring Break!

