SID:

(What is your) Quest(?)

Please read the questions carefully and answer appropriately.

- 1. a. (2 points) The function f(x, y) = 1 + 3x 4y
 - i. Exhibits homogeneity
 - ii. Is linear
 - iii. Both i and ii are true
 - iv. None of the above are true

Briefly explain:

b. (4 points) For each of the following functions, circle <u>all the possible operations</u> that when put in the box ____, will result in a linear function. If none of the operations work, circle "none".

i. $f(x) = x \square 3$	+	_	÷	×	none
ii. $f(x) = \sin(y_0) \square x$	+	—	÷	×	none
iii. $f(x, y) = 3x \square y$	+	—	÷	×	none
iv. $f(x, y) = e^{2x \Box y}$	+	—	÷	×	none

2. Ana and Miki go shopping. They see three gift baskets containing apples, oranges and bananas

(a) (5 points) Let $\vec{x} = \begin{bmatrix} x_a \\ x_o \\ x_b \end{bmatrix}$ be a vector, containing the prices of a single apple, single orange and single

banana respectively. To find \vec{x} , we form the linear set of equations: $A\vec{x} = \vec{b}$. What are the entries of A and \vec{b} ?

$$A = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} \quad \overrightarrow{b} = \begin{bmatrix} & \\ & & \\ & & \end{bmatrix}$$

(b) (3 points) Based on the system in part (b), find a solution for \vec{x} , via Gaussian Elimination (show your work – **Answer in the next page**):

Answers for 2a:

 $x_{\rm a} = x_{\rm o} = x_{\rm b} =$

3. (6 points) After performing Gaussian Elimination row reduction, you end up with a row-echelon form. For each of the following cases, circle whether the system has a unique solution, infinite solutions, or no solution. If any solutions exist, state the solution (if it is unique) or express the set of possible solutions.

(a)
$$\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

(Unique, infinite solns., no solns.)

Solution(s):

(c) $\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

(Unique, infinite solns., no solns.)

(b) $\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

(Unique, infinite solns., no solns.)

Solution(s):

(d)
$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

(Unique, infinite solns., no solns.)

Solution(s):

Solution(s):

- 4. (5 points) Let $A \in \mathbb{R}^{N \times M}$, $B \in \mathbb{R}^{N \times L}$, $\vec{a} \in \mathbb{R}^{L}$, $\vec{b} \in \mathbb{R}^{M}$, $\vec{c} \in \mathbb{R}^{N}$. For each of the following expressions, state the size of the resulting product if it exists, or circle "doesn't exist" if the product is not valid.
 - (a) $\overrightarrow{c}^T A \in \mathbb{R}^{---\times ---}$ or doesn't exist
 - (b) $\overrightarrow{b}^T A^T B \in \mathbb{R}^{---\times ---}$ or doesn't exist
 - (c) $(B \overrightarrow{c})^T A \in \mathbb{R}^{---\times ---}$ or doesn't exist
 - (d) $\overrightarrow{a} \overrightarrow{b}^T \overrightarrow{b} \overrightarrow{a}^T \overrightarrow{a} \overrightarrow{b}^T \in \mathbb{R}^{--\times ---}$ or doesn't exist
 - (e) $\vec{b}^T \vec{b} \vec{a}^T \vec{a} \vec{b}^T \vec{b} \in \mathbb{R}^{---\times ----}$ or doesn't exist
- 5. (0 points, but lots of credit) What is the airspeed velocity of an unladen swallow?