(What is your) Quest(?)
Please read the questions carefully and answer appropriately.

1. a. (2 points) The function $f(x, y)=1+3 x-4 y$
i. Exhibits homogeneity
ii. Is linear
iii. Both i and ii are true
iv. None of the above are true

Briefly explain:
b. (4 points) For each of the following functions, circle all the possible operations that when put in the box \square, will result in a linear function. If none of the operations work, circle "none".
i. $f(x)=x \square 3$
$+\quad-\quad \times \quad$ none
ii. $f(x)=\sin \left(y_{0}\right) \square x$
$+\quad \div \quad \times$ none
iii. $f(x, y)=3 x \square y$
$+\quad-\quad \times \quad$ none
iv. $f(x, y)=e^{2 x \square y}$
$+\quad-\quad \times \quad$ none
2. Ana and Miki go shopping. They see three gift baskets containing apples, oranges and bananas

\$9

\$8

\$9
(a) (5 points) Let $\vec{x}=\left[\begin{array}{l}x_{\mathrm{a}} \\ x_{\mathrm{o}} \\ x_{\mathrm{b}}\end{array}\right]$ be a vector, containing the prices of a single apple, single orange and single banana respectively. To find \vec{x}, we form the linear set of equations: $A \vec{x}=\vec{b}$. What are the entries of A and \vec{b} ?

(b) (3 points) Based on the system in part (b), find a solution for \vec{x}, via Gaussian Elimination (show your work - Answer in the next page):

$$
x_{\mathrm{a}}=\quad x_{\mathrm{o}}=\quad x_{\mathrm{b}}=
$$

3. (6 points) After performing Gaussian Elimination row reduction, you end up with a row-echelon form. For each of the following cases, circle whether the system has a unique solution, infinite solutions, or no solution. If any solutions exist, state the solution (if it is unique) or express the set of possible solutions.
(a) $\left[\begin{array}{ll|l}1 & 3 & 0 \\ 0 & 1 & 0\end{array}\right]$
(Unique, infinite solns., no solns.)

Solution(s):

(c) $\left[\begin{array}{ll|l}1 & 3 & 0 \\ 0 & 1 & 1\end{array}\right]$
(Unique, infinite solns., no solns.)
Solution(s):
(b) $\left[\begin{array}{ll|l}1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
(Unique, infinite solns., no solns.)

Solution(s):

(d) $\left[\begin{array}{lll|l}1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
(Unique, infinite solns., no solns.)
Solution(s):
4. (5 points) Let $A \in \mathbb{R}^{N \times M}, B \in \mathbb{R}^{N \times L}, \vec{a} \in \mathbb{R}^{L}, \vec{b} \in \mathbb{R}^{M}, \vec{c} \in \mathbb{R}^{N}$. For each of the following expressions, state the size of the resulting product if it exists, or circle "doesn't exist" if the product is not valid.
(a) $\vec{c}^{T} A \quad \in \mathbb{R}^{---x----}$ or doesn't exist
(b) $\vec{b}^{T} A^{T} B \quad \in \mathbb{R}^{---\times----}$or doesn't exist
(c) $(B \vec{c})^{T} A \quad \in \mathbb{R}^{---x----} \quad$ or doesn't exist
(d) $\vec{a} \vec{b}^{T} \vec{b} \vec{a}^{T} \vec{a}^{a} \vec{b}^{T} \quad \in \mathbb{R}^{---x----}$ or doesn't exist
(e) $\vec{b}^{T} \vec{b} \vec{a}^{T} \vec{a}^{T} \vec{b}^{T} \vec{b} \quad \in \mathbb{R}^{---x----} \quad$ or doesn't exist
5. (0 points, but lots of credit) What is the airspeed velocity of an unladen swallow?

