EECS 16A Designing Information Devices and Systems I

Spring 2023

1. Matrix Multiplication

Consider the following matrices:

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
1 & 4
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right] \quad \mathbf{D}=\left[\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right] \\
\mathbf{E}=\left[\begin{array}{llll}
1 & 9 & 5 & 7 \\
4 & 3 & 2 & 2
\end{array}\right] \quad \mathbf{F}=\left[\begin{array}{lll}
5 & 5 & 8 \\
6 & 1 & 2 \\
4 & 1 & 7 \\
3 & 2 & 2
\end{array}\right] \quad \mathbf{G}=\left[\begin{array}{lll}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{array}\right] \quad \mathbf{H}=\left[\begin{array}{lll}
5 & 3 & 4 \\
1 & 8 & 2 \\
2 & 3 & 5
\end{array}\right]
\end{gathered}
$$

For each matrix multiplication problem, if the product exists, find the product by hand. Otherwise, explain why the product does not exist.
(a) $\mathbf{A B}$
(b) $\mathbf{C D}$
(c) $\mathbf{D ~ C}$

(d) $\mathbf{C ~ E}$

(e) FEE (only note whether or not the product exists and optionally compute the product if it does)
(f) $\mathbf{E} \mathbf{F}$ (only note whether or not the product exists and optionally compute the product if it does)
(g) G H (Practice on your own)
(h) H G (Practice on your own)

2. Visualizing Linear Combinations of Vectors

We are given a point \vec{c} that we want to get to, but we can only move in two directions: \vec{a} and \vec{b}. We know that to get to \vec{c}, we can travel along \vec{a} for some amount α, then change direction and travel along \vec{b} for some amount β. We want to find these two scalars α and β, such that we reach point \vec{c}. That is, $\alpha \vec{a}+\beta \vec{b}=\vec{c}$.

(a) First, consider the case where $\vec{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{y}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, and $\vec{z}=\left[\begin{array}{c}-2 \\ 2\end{array}\right]$. Draw these vectors.

(b) We want to find the two scalars α and β, such that by moving α along \vec{x} and β along \vec{y}, we can reach \vec{z}. Write a system of equations to find α and β in matrix form.
(c) Solve for α, β.
(d) Superimpose the scaled vectors $\alpha \vec{x}$ and $\beta \vec{y}$ on your graph in part (a) and confirm $\alpha \vec{x}+\beta \vec{y}=\vec{z}$.

