EECS 16A Designing Information Devices and Systems I

Spring 2023 Discussion 4B

1. Identifying a Subspace: Proof

Is the set

$$
V=\left\{\vec{v} \left\lvert\, \vec{v}=c\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+d\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right. \text {, where } c, d \in \mathbb{R}\right\}
$$

a subspace of \mathbb{R}^{3} ? Why or why not?

2. Mechanical Determinants

(a) Compute the determinant of $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$.
(b) Compute the determinant of $\left[\begin{array}{ccc}2 & -3 & 1 \\ 2 & 0 & -1 \\ 1 & 4 & 5\end{array}\right]$.
(c) Recall from lecture that the determinant of a matrix represents the multi-dimensional volume formed by the column vectors. Explain geometrically why the determinant of a matrix with linearly dependent column vectors is always 0 .

3. Mechanical Eigenvalues and Eigenvectors

In each part, find the eigenvalues of the matrix \mathbf{M} and their associated eigenvectors.
(a) $\mathbf{M}=\left[\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right]$

Do you observe anything about the eigenvalues and eigenvectors?
(b) $\mathbf{M}=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]$

