EECS 16A Designing Information Devices and Systems I Spring 2023 Discussion 7B

1. Resist the Touch

Investigate the $N \times N$ resistive touchscreen with vertical length L and horizontal width W shown in Figure 1. The touchscreen is constructed in two layers: a flexible conductive top layer comprised of N vertically oriented strips with even spacing $\frac{W}{N+1}$; and a rigid conductive bottom layer comprised of horizontally oriented strips with even spacing $\frac{L}{N+1}$.
The vertical and horizontal strips form a grid of detectable touch points. The upper left touch point in Figure $1(\mathrm{~b})$ is position $(1,1)$, and the upper right touch point is $(N, 1)$. All strips in top and bottom layers have equal resistivity, ρ, and cross-sectional area, A.

Figure 1: $N \times N$ Resistive Touch Screen, $N=5$
(a) Find the resistance R_{y} for a single vertical blue strip and R_{x} for a single horizontal red strip as a function of the screen dimensions W and L, the strip resistivity ρ, and the cross-sectional area A.

Figure 2: 2×2 Resistive Touch Screen
(b) Consider a 2×2 example for the touchscreen circuit, as shown in Figure 2.

Assume a voltage source V_{s} is connected from the top to bottom terminals of all the vertical (blue) strips, and a voltmeter V_{m} is connected from the left terminal of all horizontal (red) strips to the negative terminal of the voltage source.
If $V_{s}=3 \mathrm{~V}, R_{x}=2000 \Omega$, and $R_{y}=2000 \Omega$, draw the equivalent circuit for when the point $(2,2)$ is pressed and solve for the measured voltage, V_{m}, with respect to ground.
(c) Suppose a touch occurs at coordinates (i, j) for an arbitrary $N \times N$ touchscreen, and the voltage source and meter are connected as in the diagrams. Find an expression for V_{m} as a function of V_{s}, N, i, and j.

