EECS 16A Designing Information Devices and Systems I

1. Op-Amp Rules

Here is an equivalent circuit of an op-amp (where we are assuming that $V_{S S}=-V_{D D}$) for reference:

(a) What are the currents flowing into the positive and negative terminals of the op-amp (i.e., what are i^{+} and i^{-})? Based on this answer, what are some of the advantages of using an op-amp in your circuit designs?
(b) Suppose we add a resistor of value R_{L} between $u_{\text {out }}$ and ground. What is the value of $v_{\text {out }}$? Does your answer depend on R_{L} ? In other words, how does R_{L} affect $A v_{\mathrm{C}}$? What are the implications of this with respect to using op-amps in circuit design?
(c) Now suppose our op-amp is connected in negative feedback.

What is the relationship between u^{+}and u^{-}?

2. A Trans-Resistance Amplifier

Calculate $v_{\text {out }}$ as a function of I_{s} and R.
Hint: First show that the op-amp is in negative feedback and then apply the golden rules.

3. Multiple Inputs To One Op-Amp

(a) First, let's focus on the left part of the circuit containing the voltage sources $v_{s 1}$ and $v_{s 2}$, and resistances R_{1} and R_{2}. Solve for u_{+}in the circuit above. (Hint: Use superposition.)
(b) How would you choose R_{1} and R_{2} that produce a voltage $u_{+}=\frac{1}{2} V_{s 1}+\frac{1}{2} V_{s 2}$? Could you also achieve $u_{+}=\frac{1}{3} V_{s 1}+\frac{2}{3} V_{s 2}$?
(c) Now, for the whole circuit, find an expression for v_{o}.
(d) How should we select our values $R_{1}, R_{2}, R_{3}, R_{4}$ to find the sum of different signals, i.e. $V_{s 1}+V_{s 2}$? What about taking the sum and multiplying by 2 , i.e. $2\left(V_{s 1}+V_{s 2}\right)$?

