EECS 16A Designing Information Devices and Systems I

Spring 2023 Discussion 14A

1. Mechanical Projection

In \mathbb{R}^{n}, the vector valued projection of vector \vec{b} onto vector \vec{a} is defined as:

$$
\operatorname{proj}_{\vec{a}}(\vec{b})=\frac{\langle\vec{a}, \vec{b}\rangle}{\|\vec{a}\|^{2}} \vec{a} .
$$

Recall $\|\vec{a}\|^{2}=\langle\vec{a}, \vec{a}\rangle$.
(a) Project $\left[\begin{array}{l}5 \\ 2\end{array}\right]$ onto $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ - that is, onto the y-axis. Graph these two vectors and the projection.

(b) Project $\left[\begin{array}{c}4 \\ -2\end{array}\right]$ onto $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. Graph these two vectors and the projection.

(c) Project $\left[\begin{array}{c}4 \\ -2\end{array}\right]$ onto $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Graph these two vectors and the projection.

2. Least Squares with Orthogonal Columns

(a) Consider a least squares problem of the form

$$
\min _{\vec{x}}\|\vec{b}-\mathbf{A} \vec{x}\|^{2}=\min _{\vec{x}}\|\mathbf{A} \vec{x}-\vec{b}\|^{2}=\min _{\vec{x}}\left\|\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]-\left[\begin{array}{cc}
\mid & \mid \\
\overrightarrow{a_{1}} & \overrightarrow{a_{2}} \\
\mid & \mid
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right\|^{2}
$$

Let the solution be $\overrightarrow{\hat{x}}=\left[\begin{array}{l}\hat{x}_{1} \\ \hat{x}_{2}\end{array}\right]$.
Label the following elements in the diagram below.

$$
\operatorname{span}\left\{\vec{a}_{1}, \vec{a}_{2}\right\}, \quad \overrightarrow{\hat{e}}=\vec{b}-\mathbf{A} \overrightarrow{\hat{x}}, \quad \mathbf{A} \overrightarrow{\hat{x}}, \quad \vec{a}_{1} \hat{x}_{1}, \vec{a}_{2} \hat{x}_{2}, \quad \operatorname{colspace}(\mathbf{A})
$$

(b) We now consider the special case of least squares where the columns of \mathbf{A} are orthogonal. Given that $\overrightarrow{\hat{x}}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \vec{b}$ and $A \overrightarrow{\hat{x}}=\operatorname{proj}_{\mathbf{A}}(\vec{b})=\hat{x_{1}} \overrightarrow{a_{1}}+\hat{x_{2}} \overrightarrow{a_{2}}$, show that

$$
\begin{aligned}
& \operatorname{proj}_{\vec{a}_{1}}(\vec{b})=\hat{x_{1}} \vec{a}_{1} \\
& \operatorname{pro}_{\overrightarrow{a_{2}}}(\vec{b})=\hat{x_{2}} \vec{a}_{2}
\end{aligned}
$$

(c) Compute the least squares solution to

$$
\min _{\vec{x}}\left\|\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right\|^{2}
$$

