EECS 16A Designing Information Devices and Systems I

Spring 2023 Exam Prep 3A

1. Campfire Smores (Fall 2019 Midterm 1 Question 3)

Patrick and SpongeBob are making smores.
There are three ingredients: Graham Crackers, Marshmallows, and Chocolate. To make a smore, SpongeBob needs: s_{g} Graham Crackers, s_{m} number of Marshmallows, and s_{c} Chocolate.

Ingredients	Amount Needed
Graham Crackers $\left(s_{g}\right)$	10
Marshmallows $\left(s_{m}\right)$	14
Chocolate $\left(s_{c}\right)$	20

Table 1: SpongeBob's smore
They find out that these ingredients are only stored in bundles as below:

Lobster Pack $\left(p_{l}\right)$
6 graham crackers
4 marshmallows
2 chocolates

Mr. Krabs Pack $\left(p_{k}\right)$
2 graham crackers
2 marshmallows
1 chocolates

Squidward Pack $\left(p_{s}\right)$
3 graham crackers
3 marshmallows
5 chocolates

Gary Pack $\left(p_{g}\right)$
1 graham crackers
4 marshmallows
5 chocolates

Pearl Pack $\left(p_{p}\right)$
2 graham crackers
3 marshmallows
2 chocolates

Table 2: Amount of Ingredients per Bundle
Spongebob and Patrick need to know how many of each bundle to buy: number of "Lobster" Packs, p_{l}, number of "Mr. Krabs" Packs, p_{k}, number of "Squidward" Packs, p_{s}, number of "Gary" Packs, p_{g}, and number of "Pearl" Packs, p_{p}.
(a) How many equations/constraints does the information in the problem provide you with?
(b) Based on the information provided in Tables 1 and 2, write an equation of the form $\mathbf{A} \vec{p}=\vec{s}$ that SpongeBob can use to decide how many of each pack to buy. Here, $\vec{p}=\left[\begin{array}{c}p_{l} \\ p_{k} \\ p_{s} \\ p_{g} \\ p_{p}\end{array}\right]$.
(c) Now, the ingredients in the packets (\mathbf{A}) and Spongebob's receipe (\vec{s}) change. We have:
$\mathbf{A}=\left[\begin{array}{lllll}1 & 1 & 3 & 2 & 2 \\ 0 & 1 & 3 & 0 & 2 \\ 1 & 3 & 9 & 2 & 6\end{array}\right]$, and $\vec{s}=\left[\begin{array}{c}3 \\ 2 \\ 10\end{array}\right]$.
Find a \vec{p} that satisfies $\mathbf{A} \vec{p}=\vec{s}$. If no solution exists, explain why not.

2. Matrix Multiplications (Spring 2022 Midterm 1 Question 6)

(a) The matrix $\mathrm{A} \in \mathbb{R}^{500 \times 501}$ is shown below

$$
A=\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1,501} \\
\vdots & \ddots & \vdots \\
a_{500,1} & \cdots & a_{500,501}
\end{array}\right]
$$

Given another matrix $\mathrm{B} \in \mathbb{R}^{501 \times 500}$, what are the dimensions of the matrix AB ?
(b) (4 points) What are the dimensions of $\left(\left(A^{T} A\right) B\right)^{T}$?
(c) Given that the elements of matrix A and B follow the pattern:

$$
\begin{array}{ll}
A=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 2 & 0 & \cdots & 0 \\
0 & 0 & 3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots &
\end{array}\right] & a_{i, j}=\left\{\begin{array}{cc}
i & i=j \\
0 & i \neq j
\end{array}\right. \\
B=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & 2 & 1 & \cdots & 1 \\
1 & 1 & 3 & \cdots & 1 \\
\vdots & \vdots & \vdots & \cdots &]
\end{array}\right. & b_{k, l}=\left\{\begin{array}{cc}
k & k=l \\
1 & k \neq l
\end{array}\right.
\end{array}
$$

Find the element in the $4^{\text {th }}$ row and $4^{\text {th }}$ column of the matrix multiplication (AB). In other words, what is $(A B)_{4,4}$?
(d) What is $(A B)_{4,5}$?

3. Geometric Transformations (Spring 2022 Midterm 1 Question 7)

(a) Write an expression for the transformation matrix that would reflect a vector across the line $y=-x$ and then rotate them by 45 degrees counterclockwise. Write your answer as some combination of the matrices below (ex: A*B).

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] ; \mathbf{B}=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] ; \mathbf{C}=\left[\begin{array}{cc}
\cos \left(-45^{\circ}\right) & -\sin \left(-45^{\circ}\right) \\
\sin \left(-45^{\circ}\right) & -\cos \left(-45^{\circ}\right)
\end{array}\right] \\
\mathbf{D}=\left[\begin{array}{cc}
\cos \left(45^{\circ}\right) & -\sin \left(45^{\circ}\right) \\
\sin \left(45^{\circ}\right) & \cos \left(45^{\circ}\right)
\end{array}\right]
\end{gathered}
$$

(b) Consider a new transformation matrix T shown below.

$$
T=\left[\begin{array}{cc}
-\cos \left(-60^{\circ}\right) & \left.\sin \left(-60^{\circ}\right)\right) \\
\sin \left(-60^{\circ}\right) & \cos \left(-60^{\circ}\right)
\end{array}\right]
$$

What transformation does T represent? Write your answer in terms of degrees rotated and/or reflection over an axis. Graph how this matrix transforms $\overrightarrow{v_{1}}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$ and $\overrightarrow{v_{2}}=\left[\begin{array}{l}0 \\ 3\end{array}\right]$. Do your best to approximate when necessary. All reasonable answers will be accepted.

