EECS 16A Designing Information Devices and Systems I

Spring $2023 \quad$ Exam Prep 4B

1. Matrix Madness (Fall 2022 Midterm 1 Question 5)

For the following subparts, consider the matrix $\mathbf{A}=\left[\begin{array}{ll}4 & 2 \\ 2 & 1\end{array}\right]$.
(a) What is the value of a that satisfies the expression below?

$$
\operatorname{Null}(\mathbf{A})=\operatorname{span}\left(\left[\begin{array}{l}
a \\
2
\end{array}\right]\right)
$$

(b) What is the value of b that satisfies the new expression below?

$$
\operatorname{Col}(\mathbf{A})=\operatorname{span}\left(\left[\begin{array}{l}
b \\
1
\end{array}\right]\right)
$$

(c) An arbitrary matrix \mathbf{B} satisfies the following equations:

$$
\begin{aligned}
\mathbf{B}\left[\begin{array}{c}
2 \\
-1
\end{array}\right] & =\left[\begin{array}{c}
6 \\
-3
\end{array}\right] \\
\mathbf{B}\left[\begin{array}{l}
1 \\
0
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

What is $\mathbf{B}\left[\begin{array}{c}5 \\ -2\end{array}\right]$?

2. Nullspace (Spring 2022 Midterm Question 8)

(a) Consider the matrix below. What is the set of vectors that span the nullspace of A ?

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & -2 \\
-1 & -6
\end{array}\right]
$$

(b) Consider the matrix below. What is the set of vectors that span the nullspace of A ?

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & -6 & 2 \\
-2 & 4 & 2
\end{array}\right]
$$

(c) Consider the following matrix:

$$
\mathbf{A}=\left[\begin{array}{cc}
(1-x) & 2 \\
0 & (6+x)
\end{array}\right]
$$

Find all values of x for which A has a non-trivial nullspace.

3. Matrix Multiplication Proof (Spring 2022 Midterm 1 Question 10)

(a) Given that Matrix A is square and has linearly independent columns, which of the following is true?
i. A is full rank
ii. A has a trivial nullspace
iii. $\mathrm{A} \vec{x}=\vec{b}$ has a unique solution for all \vec{b}
iv. A is invertible
v. The determinant of A is non-zero
(b) Let two square matrices $\mathrm{M}_{1}, \mathrm{M}_{2} \in \mathbb{R}^{2 \times 2}$ each have linearly independent columns. Prove that $G=\mathrm{M}_{1} \mathrm{M}_{2}$ also has linearly independent columns.

4. Transition matrix Part I (Fall 2021 Midterm 1 Question 16)

Prof. Arias decides to study the internet behavior of EECS 16A students on a typical weekday night. The number of students on the top three websites (YouTube, Piazza, and Discord) at time t can be expressed as follows: $x_{y}[t], x_{p}[t], x_{d}[t]$, respectively.
She finds that the flow of students across the three websites can be shown as follows:

(a) Let $\vec{x}[t]=\left(\begin{array}{l}x_{y}[t] \\ x_{p}[t] \\ x_{d}[t]\end{array}\right)$ where $x_{y}[t], x_{p}[t], x_{d}[t]$ represent the number of students on Youtube, Piazza, and Discord at time t. Determine A such that $\vec{x}[t+1]=\mathbf{A} \vec{x}[t]$.
(b) Determine a and b such that the system is conservative.

