EECS 16A Designing Information Devices and Systems I

Spring 2023 Exam Prep 5B

1. Flight Tracking (Fall 2022 Midterm 1 Question 7)

Your friend decides to describe the air traffic through three airports in the following graph:

(a) Let $\vec{p}[t]=\left[\begin{array}{l}p_{t}[t] \\ p_{b}[t] \\ p_{s}[t]\end{array}\right]$ where $p_{t}[t], p_{b}[t], p_{s}[t]$ represent the number of airplanes at TPA, BOS, and SFO at time t respectively.

Determine \mathbf{A} such that $\vec{p}[t+1]=\mathbf{A} \vec{p}[t]$. What values of \mathbf{a}, \mathbf{b} and \mathbf{c} would make the system conservative?

You point out that if a, b, or c have a value greater than 0 , this means an airplane departing an airport arrives back at the same airport. You friend comes back with the following new transition matrix \mathbf{B} :

$$
\mathbf{B}=\left(\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0.5 & 0 & 0.5 \\
0.5 & 0.5 & 0
\end{array}\right)
$$

(b) Your friend says $\vec{p}[n]$ is $\left(\begin{array}{l}300 \\ 200 \\ 400\end{array}\right)$. Is it possible to determine the state vector at the previous timestep $n-1$? Justify why or why not.
(c) Your friend tells you that the eigenvalues of \mathbf{B} are $\lambda_{1}=1, \lambda_{2}=-\frac{1}{2}$, and $\lambda_{3}=-\frac{1}{2}$. Given that $\vec{p}[0]=$ ${ }^{300}$ $\binom{220}{380}$, what is the number of airplanes at each airport after infinite timesteps?

$$
\mathbf{B}=\left(\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0.5 & 0 & 0.5 \\
0.5 & 0.5 & 0
\end{array}\right)
$$

2. Transform that eigenvector! (Fall 2022 Midterm 1 Question 9)

(a) Suppose that a matrix \mathbf{M} has eigenvectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$, and corresponding eigenvalues λ_{1}, λ_{2}. Consider the matrix \mathbf{N}, which performs the transformation performed by \mathbf{M} twice. In other words, for some arbitrary vector, \vec{u}, the following holds:

$$
\left(\mathbf{M}^{2}\right) \vec{u}=\mathbf{N} \vec{u}
$$

What are the eigenvalues and eigenvectors of \mathbf{N}, in terms of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \lambda_{1}$, and λ_{2} ? Justify your answer.
(b) Consider the matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$, which takes a vector $\vec{v}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and scales its y component by 2 , but leaves the x component unchanged. In other words, $\mathbf{A}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x \\ 2 y\end{array}\right]$. What are the eigenvalues and corresponding eigenvectors of \mathbf{A} ?
(c) Now consider the matrix $\mathbf{C} \in \mathbb{R}^{2 \times 2}$ that performs the following vector transformations in order:

- counterclockwise rotation by 45 degrees
- scales the y component by 2 and leaves the x component unchanged
- clockwise rotation by 45 degrees

In other words, the matrix transformation can be written as the following matrix multiplication:

$$
\mathbf{C} \vec{v}=\mathbf{B}^{-1} \mathbf{A B} \vec{v}
$$

where the matrix $\mathbf{B} \in \mathbb{R}^{2 \times 2}$ performs a counterclockwise rotation by 45 degrees, and the matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ doubles the y component of the vector.

What are the eigenvalues and corresponding eigenvectors of this matrix \mathbf{C} ?

3. Matrix Multiverse (Fall 2022 Midterm 1 Question 4)

For the following questions, circle one option that most accurately completes the statement. Then provide a brief explanation of your choice.
(a) Consider a set of n linearly independent vectors $\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\} \in \mathbb{R}^{n}$. A vector $\vec{u} \in \mathbb{R}^{n}$ will:

Option 1. Always be a linear combination of $\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$
Option 2. Sometimes be a linear combination of $\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$
Option 3. Never be a linear combination of $\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$
(b) Consider a randomly chosen set of n vectors $\left\{\vec{z}_{1}, \ldots, \vec{z}_{n}\right\} \in \mathbb{R}^{n}$. The matrix whose columns are formed by all the vectors in this set will:

Option 1. Always be invertible
Option 2. Sometimes be invertible
Option 3. Never be invertible
(c) Consider the following augmented matrix where $*$ can be any value that is not 0 and not 1 :

$$
\left[\begin{array}{llll|l}
1 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 1 & * & *
\end{array}\right]
$$

The system of linear equations represented:

Option 1. has a unique solution
Option 2. has no unique solution
Option 3. has infinite solutions
Option 4. has no solutions
(d) Finally, consider a matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$. If \mathbf{B} has a non-zero determinant, then:

Option 1. it must have linearly dependent columns
Option 2. the columns of \mathbf{B} span \mathbb{R}^{n}
Option 3. it must have a non-trivial null space
Option 4. one solution to the characteristic polynomial must be zero

4. (Gaussian) Eliminate Your Options (Spring 2022 Midterm 1 Question 5)

We have a system of equations in the form of a matrix vector equation $A \vec{x}=\vec{b}$. We know the following about A:

- $A \in \mathbb{R}^{3 \times 4}$
- The first and second columns of A are not scalar multiples of each other.
- The third column is a linear combination of the first and second columns.

Determine which of the possible augmented matrices could represent the result of performing Gaussian Elimination on A to reach the Row Echelon Form. Please justify your answer for each matrix. (Note: asterisks represent any real number)
(a) $\left[\begin{array}{llll|l}1 & * & * & * & * \\ 0 & 1 & * & * & * \\ 0 & 0 & 1 & * & *\end{array}\right]$
(b) $\left[\begin{array}{llll|l}1 & * & * & * & * \\ 0 & 1 & * & * & * \\ 0 & 0 & 0 & 1 & *\end{array}\right]$
(c) $\left[\begin{array}{llll|l}1 & * & * & * & * \\ 0 & 0 & 1 & * & * \\ 0 & 0 & 0 & 0 & *\end{array}\right]$
(d) $\left[\begin{array}{llll|l}1 & * & * & * & * \\ 0 & 1 & * & * & * \\ 0 & 0 & 0 & 0 & *\end{array}\right]$
(e) None of the above

