EECS 16A Designing Information Devices and Systems I Spring 2023 Exam Prep 7A

1. KCL and KVL (Spring 2022 Midterm 2 Question 3)

(a) Given the circuit below, label all the missing **element** voltages and currents using passive sign convention. You do not need to label the voltage source or node voltages.

(b) Using your labeled voltages/currents, write the KCL equation for node u_1 .

(c) Using your labeled voltages/currents, write the KVL equation for the loop containing elem₂, elem₃, elem₄ and elem₅.

2. Why is the ammeter so hot? (Fall 2022 Midterm 2 Question 3)

In the following circuit, we would like to measure the current I_m through resistor R_L using an ammeter.

(a) (4 points) If $I_S = 4$ A, $R_S = 3 \text{ m}\Omega$, and $R_L = 1 \text{ m}\Omega$, then what is the measured current I_m ? Assume an ideal ammeter.

(b) Now suppose we have different values of I_s and R_s such that $I_m = 2$ A, then what is the power dissipated by $R_L = 1 \text{ m}\Omega$? How much energy does R_L dissipate in 20 seconds?

(c) Now assume the ammeter is not ideal and can instead be modeled with equivalent resistance R_A . That is, we can replace the ammeter with a resistor R_A :

If $I_S = 4$ A, $R_S = 3 \text{ m}\Omega$, $R_L = 1 \text{ m}\Omega$, and the current measured by the ammeter (i.e., the current through R_A) is $I_m = 2$ A, then what must be the internal resistance R_A of the ammeter? How much power is dissipated by the ammeter?